

Treading on Python Series

Learning Pandas

Python Tools for Data Munging, Data Analysis, and Visualization

Matt Harrison

Technical Editor:
Copyright © 2016
While every precaution has been taken in the preparation of this book, the
publisher and author assumes no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

2

Table of Contents

From the Author
Introduction
Installation
Data Structures
Series
Series CRUD
Series Indexing
Series Methods
Series Plotting
Another Series Example
DataFrames
Data Frame Example
Data Frame Methods
Data Frame Statistics
Grouping, Pivoting, and Reshaping
Dealing With Missing Data
Joining Data Frames
Avalanche Analysis and Plotting
Summary
About the Author
Also Available
One more thing

3

From the Author

PYTHON IS EASY TO LEARN. YOU CAN LEARN THE BASICS IN A DAY AND BE

productive with it. With only an understanding of Python, moving to
pandas can be difficult or confusing. This book is meant to aid you in
mastering pandas.

I have taught Python and pandas to many people over the years, in large
corporate environments, small startups, and in Python and Data Science
conferences. I have seen what hangs people up, and confuses them. With
the correct background, an attitude of acceptance, and a deep breath, much
of this confusion evaporates.

Having said this, pandas is an excellent tool. Many are using it around
the world to great success. I hope you do as well.

Cheers!
Matt

4

Introduction

I HAVE BEEN USING PYTHON IS SOME PROFESSIONAL CAPACITY SINCE THE TURN OF

the century. One of the trends that I have seen in that time is the uptake of
Python for various aspects of "data science"- gathering data, cleaning data,
analysis, machine learning, and visualization. The pandas library has seen
much uptake in this area.

pandas 1 is a data analysis library for Python that has exploded in
popularity over the past years. The website describes it thusly:

“pandas is an open source, BSD-licensed library providing high-
performance, easy-to-use data structures and data analysis tools for
the Python programming language.”
-pandas.pydata.org

My description of pandas is: pandas is an in memory nosql database,
that has sql-like constructs, basic statistical and analytic support, as well as
graphing capability. Because it is built on top of Cython, it has less
memory overhead and runs quicker. Many people are using pandas to
replace Excel, perform ETL, process tabular data, load CSV or JSON files,
and more. Though it grew out of the financial sector (for analysis of time
series data), it is now a general purpose data manipulation library.

Because pandas has some lineage back to NumPy, it adopts some
NumPy'isms that normal Python programmers may not be aware of or
familiar with. Certainly, one could go out and use Cython to perform fast
typed data analysis with a Python-like dialect, but with pandas, you don't
need to. This work is done for you. If you are using pandas and the

5

vectorized operations, you are getting close to C level speeds, but writing
Python.

Who this book is for

This guide is intended to introduce pandas to Python programmers. It
covers many (but not all) aspects, as well as some gotchas or details that
may be counter-intuitive or even non-pythonic to longtime users of
Python.

This book assumes basic knowledge of Python. The author has written
Treading on Python Vol 1 2 that provides all the background necessary.

Data in this Book

Some might complain that the datasets in this book are small. That is true,
and in some cases (as in plotting a histogram), that is a drawback. On the
other hand, every attempt has been made to have real data that illustrates
using pandas and the features found in it. As a visual learner, I appreciate
seeing where data is coming and going. As such, I try to shy away from
just showing tables of random numbers that have no meaning.

Hints, Tables, and Images

The hints, tables, and graphics found in this book, have been collected
over almost five years of using pandas. They are derived from hangups,
notes, and cheatsheets that I have developed after using pandas and
teaching others how to use it. Hopefully, they are useful to you as well.

In the physical version of this book, is an index that has also been battle-
tested during development. Inevitably, when I was doing analysis not
related to the book, I would check that the index had the information I
needed. If it didn't, I added it. Let me know if you find any omissions!

Finally, having been around the publishing block and releasing content
to the world, I realize that I probably have many omissions that others
might consider required knowledge. Many will enjoy the content, others
might have the opposite reaction. If you have feedback, or suggestions for

6

improvement, please reach out to me. I love to hear back from readers!
Your comments will improve future versions.

1 - pandas (http://pandas.pydata.org) refers to itself in lowercase, so this
book will follow suit.

2 - http://hairysun.com/books/tread/

7

http://pandas.pydata.org
http://hairysun.com/books/tread/

Installation

PYTHON 3 HAS BEEN OUT FOR A WHILE NOW, AND PEOPLE CLAIM IT IS THE FUTURE.
As an attempt to be modern, this book will use Python 3 throughout! Do
not despair, the code will run in Python 2 as well. In fact, review versions
of the book neglected to list the Python version, and there was a single
complaint about a superfluous list(range(10)) call. The lone line of

(Python 2) code required for compatibility is:
>>> from __future__ import print_function

Having gotten that out of the way, let's address installation of pandas.
The easiest and least painful way to install pandas on most platforms is to
use the Anaconda distribution 3. Anaconda is a meta distribution of Python,
that contains many additional packages that have traditionally been
annoying to install unless you have toolchains to compile Fortran and C
code. Anaconda allows you to skip the compile step and provides binaries
for most platforms. The Anaconda distribution itself is freely available,
though commercial support is available as well.

After installing the Anaconda package, you should have a conda

executable. Running:
$ conda install pandas

Will install pandas and any dependencies. To verify that this works,
simply try to import the pandas package:

$ python

>>> import pandas

>>> pandas.__version__

'0.18.0'

If the library successfully imports, you should be good to go.

Other Installation Options

8

The pandas library will install on Windows, Mac, and Linux via pip 4.
Mac and Windows users wishing to install binaries may download them

from the pandas website. Most Linux distributions also have native
packages pre-built and available in their repos. On Ubuntu and Debian
apt-get will install the library:

$ sudo apt-get install python-pandas

Pandas can also be installed from source. I feel the need to advise you
that you might spend a bit of time going down this rabbit hole if you are
not familiar with getting compiler toolchains installed on your system.

It may be necessary to prep the environment for building pandas from
source by installing dependencies and the proper header files for Python.
On Ubuntu this is straightforward, other environments may be different:
$ sudo apt-get install build-essential python-all-dev

Using virtualenv 5 will alleviate the need for superuser access during

installation. Because virtualenv uses pip, it can download and install

newer releases of pandas if the version found on the distribution is lagging.
On Mac and Linux platforms, the following create a virtualenv

sandbox and installs the latest pandas in it (assuming that the prerequisite
files are also installed):
$ virtualenv pandas-env

$ source pandas-env/bin/activate

$ pip install pandas

After a while, pandas should be ready for use. Try to import the library
and check the version:
$ source pandas-env/bin/activate

$ python

>>> import pandas

>>> pandas.__version__

'0.18.0'

scipy.stats

Some nicer plotting features require scipy.stats. This library is not

required, but pandas will complain if the user tries to perform an action

9

that has this dependency. scipy.stats has many non-Python

dependencies and in practice turns out to be a little more involved to
install. For Ubuntu, the following packages are required before a pip

install scipy will work:

$ sudo apt-get install libatlas-base-dev gfortran

Installation of these dependencies is sufficiently annoying that it has
lead to “complete scientific Python offerings”, such as Anaconda 6. These
installers bundle many libraries, are available for Linux, Mac, and
Windows, and have optional support contracts. They are a great way to
quickly get an environment up.

Summary

Unlike "pure" Python modules, pandas is not just a pip install away unless
you have an environment configured to build it. The easiest was to get
going is to use the Anaconda Python distribution. Having said that, it is
certainly possible to install pandas using other methods.

3 - https://www.continuum.io/downloads
4 - http://pip-installer.org/
5 - http://www.virtualenv.org
6 - https://store.continuum.io/cshop/anaconda/

10

https://www.continuum.io/downloads
http://pip-installer.org/
http://www.virtualenv.org
https://store.continuum.io/cshop/anaconda/

Data Structures

ONE OF THE KEYS TO UNDERSTANDING PANDAS IS TO UNDERSTAND THE DATA

model. At the core of pandas are three data structures:

Different dimensions of pandas data structures
DATA STRUCTURE DIMENSIONALITY SPREADSHEET ANALOG

Series 1D Column

DataFrame 2D Single Sheet

Panel 3D Multiple Sheets

The most widely used data structures are the Series and the DataFrame

that deal with array data and tabular data respectively. An analogy with the
spreadsheet world illustrates the basic differences between these types. A
DataFrame is similar to a sheet with rows and columns, while a Series is

similar to a single column of data. A Panel is a group of sheets. Likewise,

in pandas a Panel can have many DataFrames, each which in turn may

have multiple Series.

11

Figure showing relation between main data structures in pandas. Namely, that a data
frame can have multiple series, and a panel has multiple data frames.

Diving into these core data structures a little more is useful because a bit
of understanding goes a long way towards better use of the library. This
book will ignore the Panel, because I have yet to see anyone use it in the

real world. On the other hand, we will spend a good portion of time
discussing the Series and DataFrame. Both the Series and DataFrame

share features. For example they both have an index, which we will need
to examine to really understand how pandas works.

Also, because the DataFrame can be thought of as a collection of

columns that are really Series objects, it is imperative that we have a

12

comprehensive study of the Series first. Additionally, we see this when

we iterate over rows, and the rows are represented as Series.

Some have compared the data structures to Python lists or dictionaries,
and I think this is a stretch that doesn't provide much benefit. Mapping the
list and dictionary methods on top of pandas' data structures just leads to
confusion.

Summary

The pandas library includes three main data structures and associated
functions for manipulating them. This book will focus on the Series and

DataFrame. First, we will look at the Series as the DataFrame can be

thought of as a collection of Series.

13

Series

A SERIES IS USED TO MODEL ONE DIMENSIONAL DATA, SIMILAR TO A LIST IN

Python. The Series object also has a few more bits of data, including an

index and a name. A common idea through pandas is the notion of an axis.
Because a series is one dimensional, it has a single axis—the index.

Below is a table of counts of songs artists composed:

ARTIST DATA

0 145

1 142

2 38

3 13

To represent this data in pure Python, you could use a data structure
similar to the one that follows. It is a dictionary that has a list of the data
points, stored under the 'data' key. In addition to an entry in the

dictionary for the actual data, there is an explicit entry for the
corresponding index values for the data (in the 'index' key), as well as an

entry for the name of the data (in the 'name' key):

>>> ser = {

... 'index':[0, 1, 2, 3],

... 'data':[145, 142, 38, 13],

... 'name':'songs'

... }

The get function defined below can pull items out of this data structure

based on the index:
>>> def get(ser, idx):

... value_idx = ser['index'].index(idx)

... return ser['data'][value_idx]

>>> get(ser, 1)

14

142

NOTE

The code samples in this book are generally shown as if they were
typed directly into an interpreter. Lines starting with >>> and ... are

interpreter markers for the input prompt and continuation prompt
respectively. Lines that are not prefixed by one of those sequences are
the output from the interpreter after running the code.

The Python interpreter will print the return value of the last
invocation (even if the print statement is missing) automatically. To

use the code samples found in this book, leave the interpreter markers
out.

The index abstraction

This double abstraction of the index seems unnecessary at first glance—a
list already has integer indexes. But there is a trick up pandas' sleeves. By
allowing non-integer values, the data structure actually supports other
index types such as strings, dates, as well as arbitrary ordered indices or
even duplicate index values.

Below is an example that has string values for the index:
>>> songs = {

... 'index':['Paul', 'John', 'George', 'Ringo'],

... 'data':[145, 142, 38, 13],

... 'name':'counts'

... }

>>> get(songs, 'John')

142

The index is a core feature of pandas’ data structures given the library’s
past in analysis of financial data or time series data. Many of the
operations performed on a Series operate directly on the index or by

index lookup.

The pandas Series

15

With that background in mind, let’s look at how to create a Series in

pandas. It is easy to create a Series object from a list:

>>> import pandas as pd

>>> songs2 = pd.Series([145, 142, 38, 13],

... name='counts')

>>> songs2

0 145

1 142

2 38

3 13

Name: counts, dtype: int64

When the interpreter prints our series, pandas makes a best effort to
format it for the current terminal size. The left most column is the index
column which contains entries for the index. The generic name for an
index is an axis, and the values of the index—0, 1, 2, 3—are called axis
labels. The two dimensional structure in pandas—a DataFrame—has two

axes, one for the rows and another for the columns.

Figure showing the parts of a Series.

The rightmost column in the output contains the values of the series. In
this case, they are integers (the console representation says dtype: int64,

dtype meaning data type, and int64 meaning 64 bit integer), but in

16

general values of a Series can hold strings, floats, booleans, or arbitrary

Python objects. To get the best speed (such as vectorized operations), the
values should be of the same type, though this is not required.

It is easy to inspect the index of a series (or data frame), as it is an
attribute of the object:
>>> songs2.index

RangeIndex(start=0, stop=4, step=1)

The default values for an index are monotonically increasing integers.
songs2 has an integer based index.

NOTE

The index can be string based as well, in which case pandas indicates
that the datatype for the index is object (not string):

>>> songs3 = pd.Series([145, 142, 38, 13],

... name='counts',

... index=['Paul', 'John', 'George', 'Ringo'])

Note that the dtype that we see when we print a Series is the type

of the values, not of the index:
>>> songs3

Paul 145

John 142

George 38

Ringo 13

Name: counts, dtype: int64

When we inspect the index attribute, we see that the dtype is

object:

>>> songs3.index

Index(['Paul', 'John', 'George', 'Ringo'],

dtype='object')

The actual data for a series does not have to be numeric or
homogeneous. We can insert Python objects into a series:
>>> class Foo:

... pass

17

>>> ringo = pd.Series(

... ['Richard', 'Starkey', 13, Foo()],

... name='ringo')

>>> ringo

0 Richard

1 Starkey

2 13

3 <__main__.Foo instance at 0x...>

Name: ringo, dtype: object

In the above case, the dtype-datatype-of the Series is object (meaning

a Python object). This can be good or bad.
The object data type is used for strings. But, it is also used for values

that have heterogenous types. If you have numeric data, you wouldn't want
it to be stored as a Python object, but rather as an int64 or float64, which

allow you to do vectorized numeric operations.
If you have time data and it says it has the object type, you probably

have strings for the dates. This is bad as you don't get the date operations
that you would get if the type were datetime64[ns]. Strings on the other

hand, are stored in pandas as object. Don't worry, we will see how to

convert types later in the book.

The NaN value

A value that may be familiar to NumPy users, but not Python users in
general, is NaN. When pandas determines that a series holds numeric

values, but it cannot find a number to represent an entry, it will use NaN.

This value stands for Not A Number, and is usually ignored in arithmetic
operations. (Similar to NULL in SQL).

Here is a series that has NaN in it:

>>> nan_ser = pd.Series([2, None],

... index=['Ono', 'Clapton'])

>>> nan_ser

Ono 2.0

Clapton NaN

dtype: float64

NOTE

18

One thing to note is that the type of this series is float64, not int64!

This is because the only numeric column that supports NaN is the float

column. When pandas sees numeric data (2) as well as the None, it

coerced the 2 to a float value.

Below is an example of how pandas ignores NaN. The .count method,

which counts the number of values in a series, disregards NaN. In this case,

it indicates that the count of items in the Series is one, one for the value

of 2 at index location Ono, ignoring the NaN value at index location

Clapton:

>>> nan_ser.count()

1

NOTE

If you load data from a CSV file, an empty value for an otherwise
numeric column will become NaN. Later, methods such as .fillna

and .dropna will explain how to deal with NaN.

None, NaN, nan, and null are synonyms in this book when referring to

empty or missing data found in a pandas series or data frame.

Similar to NumPy

The Series object behaves similarly to a NumPy array. As show below,

both types respond to index operations:
>>> import numpy as np

>>> numpy_ser = np.array([145, 142, 38, 13])

>>> songs3[1]

142

>>> numpy_ser[1]

142

They both have methods in common:
>>> songs3.mean()

84.5

19

>>> numpy_ser.mean()

84.5

They also both have a notion of a boolean array. This is a boolean
expression that is used as a mask to filter out items. Normal Python lists do
not support such fancy index operations:
>>> mask = songs3 > songs3.median() # boolean array

>>> mask

Paul True

John True

George False

Ringo False

Name: counts, dtype: bool

Once we have a mask, we can use that to filter out items of the
sequence, by performing an index operation. If the mask has a True value

for a given index, the value is kept. Otherwise, the value is dropped. The
mask above represents the locations that have a value greater than the
median value of the series.
>>> songs3[mask]

Paul 145

John 142

Name: counts, dtype: int64

NumPy also has filtering by boolean arrays, but lacks the .median

method on an array. Instead, NumPy provides a median function in the

NumPy namespace:
>>> numpy_ser[numpy_ser > np.median(numpy_ser)]

array([145, 142])

NOTE

Both NumPy and pandas have adopted the convention of using import
statements in combination with an as statement to rename their

imports to two letter acronyms:
>>> import pandas as pd

>>> import numpy as np

This removes some typing while still allowing the user to be
explicit with their namespaces.

20

Be careful, as you may see to following cast about in code samples:
>>> from pandas import *

Though you see star imports frequently used in examples online, I
would advise not to use star imports. They have the potential to
clobber items in your namespace and make tracing the source of a
definition more difficult (especially if you have multiple star
imports). As the Zen of Python states, “Explicit is better than
implicit” 7.

Summary

The Series object is a one dimensional data structure. It can hold

numerical data, time data, strings, or arbitrary Python objects. If you are
dealing with numeric data, using pandas rather than a Python list will give
you additional benefits as it is faster, consumes less memory, and comes
with built-in methods that are very useful to manipulate the data. In
addition, the index abstraction allows for accessing values by position or
label. A Series can also have empty values, and has some similarities to

NumPy arrays. This is the basic workhorse of pandas, mastering it will pay
dividends.

7 - Type import this into an interpreter to see the Zen of Python. Or

search for "PEP 20".

21

Series CRUD

THE PANDAS SERIES DATA STRUCTURE PROVIDES SUPPORT FOR THE BASIC CRUD

operations—create, read, update, and delete. One thing to be aware of is
that in general pandas objects tend to behave in an immutable manner.
Although they are mutable, you don’t normally update a series, but rather
perform an operation that will return a new Series. Exceptions to this are

noted throughout the book.

Creation

It is easy to create a series from a Python list of values. Here we create a
series with the count of songs attributed to George Harrison during the
final years of The Beatles and the release of his 1970 album, All Things
Must Pass. The index is specified as the second parameter using a list of
string years as values. Note that 1970 is included once for George's work
as a member of the Beatles and repeated for his solo album:
>>> george_dupe = pd.Series([10, 7, 1, 22],

... index=['1968', '1969', '1970', '1970'],

... name='George Songs')

>>> george_dupe

1968 10

1969 7

1970 1

1970 22

Name: George Songs, dtype: int64

The previous example illustrates an interesting feature of pandas—the
index values are strings and they are not unique. This can cause some
confusion, but can also be useful when duplicate index items are needed.

This series was created with a list and an explicit index. A series can
also be created with a dictionary that maps index entries to values. If a
dictionary is used, an additional sequence containing the order of the index

22

is mandatory. This last parameter is necessary because a Python dictionary
is not ordered.

For our current data, creating this series from a dictionary is less
powerful, because it cannot place different values in a series for the same
index label (a dictionary has unique keys and we are using the keys as
index labels). One might attempt to get around this by mapping the label to
a list of values, but these attempts will fail. The list of values will be
interpreted as a Python list, not two separate entries:
>>> g2 = pd.Series({'1969': 7, '1970': [1, 22]},

... index=['1969', '1970', '1970'])

>>> g2

1969 7

1970 [1, 22]

1970 [1, 22]

dtype: object

TIP

If you need to have multiple values for an index entry, use a list to
specify both the index and values.

Reading

To read or select the data from a series, one can simply use an index
operation in combination with the index entry:
>>> george_dupe['1968']

10

Normally this returns a scalar value. However, in the case where index
entries repeat, this is not the case! Here, the result will be another Series

object:
may not be a scalar!

>>> george_dupe['1970']

1970 1

1970 22

Name: George Songs, dtype: int64

NOTE

23

Care must be taken when working with data that has non-unique
index values. Scalar values and Series objects have a different

interface, and trying to treat them the same will lead to errors.

We can iterate over data in a series as well. When iterating over a series,
we loop over the values of the series:
>>> for item in george_dupe:

... print(item)

10

7

1

22

However, though iteration (looping over the values via the .__iter__

method) occurs over the values of a series, membership (checking for
value in the series with the .__contains__ method) is against the index

items. Neither Python lists nor dictionaries behave this way. If you wanted
to know if the value 22 was in george_dupe, you might fall victim to an

erroneous result if you think you can simply use the in test for

membership:
>>> 22 in george_dupe

False

To test a series for membership, test against the set of the series or the

.values attribute:

>>> 22 in set(george_dupe)

True

>>> 22 in george_dupe.values

True

This can be tricky, remember that in a series, although iteration is over
the values of the series, membership is over the index names:
>>> '1970' in george_dupe

True

To iterate over the tuples containing both the index label and the value,
use the .iteritems method:

24

>>> for item in george_dupe.iteritems():

... print(item)

('1968', 10)

('1969', 7)

('1970', 1)

('1970', 22)

Updating

Updating values in a series can be a little tricky as well. To update a value
for a given index label, the standard index assignment operation works and
performs the update in-place (in effect mutating the series):
>>> george_dupe['1969'] = 6

>>> george_dupe['1969']

6

The index assignment operation also works to add a new index and a
value. Here we add the count of songs for his 1973 album, Living in a
Material World:
>>> george_dupe['1973'] = 11

>>> george_dupe

1968 10

1969 6

1970 1

1970 22

1973 11

Name: George Songs, dtype: int64

Because an index operation either updates or appends, one must be
aware of the data they are dealing with. Be careful if you intend to add a
value with an index entry that already exists in the series. Assignment via
an index operation to an existing index entry will overwrite previous
entries.

Notice what happens when we try to update an index that has duplicate
entries. Say we found an extra Beatles song in 1970 attributed to George,
and wanted to update the entry that held 1 to 2:
>>> george_dupe['1970'] = 2

>>> george_dupe

1968 10

1969 6

1970 2

1970 2

1973 11

Name: George Songs, dtype: int64

25

Both values for 1970 were set to 2. If you had to deal with data such as
this, it would probably be better to use a data frame with a column for
artist (i.e. Beatles, or George Harrison) or a multi-index (described later).
To update values based purely on position, perform an index assignment of
the .iloc attribute:

>>> george_dupe.iloc[3] = 22

>>> george_dupe

1968 10

1969 6

1970 2

1970 22

1973 11

Name: George Songs, dtype: int64

NOTE

There is an .append method on the series object, but it does not

behave like the Python list's .append method. It is somewhat

analogous the Python list's .extend method in that it expects another

series to append to:
>>> george_dupe.append(pd.Series({'1974':9}))

1968 10

1969 6

1970 2

1970 22

1973 11

1974 9

dtype: int64

In this case, we keep the original series intact and a new Series

object is returned as the result. Note that the name of the george

series is not carried over into the new series.

The series object has a .set_value method that will both add a new

item to the existing series and return a series:
>>> george_dupe.set_value('1974', 9)

1968 10

1969 6

1970 2

1970 22

1973 11

1974 9

26

Name: George Songs, dtype: int64

Deletion

Deletion is not common in the pandas world. It is more common to use
filters or masks to create a new series that has only the items that you
want. However, if you really want to remove entries, you can delete based
on index entries.

Recent versions of pandas support the del statement, which deletes

based on the index:
>>> del george_dupe['1973']

>>> george_dupe

1968 10

1969 6

1970 2

1970 22

1974 9

Name: George Songs, dtype: int64

NOTE

The del statement appears to have problems with duplicate index

values (as of version 0.14.1):
>>> s = pd.Series([2, 3, 4], index=[1, 2, 1])

>>> del s[1]

>>> s

1 4

dtype: int64

One might assume that del would remove any entries with that

index value. For some reason, it also appears to have removed index 2
but left the second index 1.

To delete values from a series, it is more common to filter the series to
get a new series. Here is a basic filter that returns all values less than or
equal to 2. The example below uses a boolean array inlined into the index
operation. This is common in NumPy but not supported in normal Python
lists or dictionaries:
>>> george_dupe[george_dupe <= 2]

27

1970 2

Name: George Songs, dtype: int64

Summary

A Series doesn't just hold data. It allows you to get at the data, update it,

or remove it. Often, we perform this operations through the index. We
have just scratched the surface in this chapter. In future chapters, we will
dive deeper into the Series.

28

Series Indexing

THIS SECTION WILL DISCUSS INDEXING BEST PRACTICES. AS ILLUSTRATED WITH OUR

example series, the index does not have to be whole numbers. Here we use
strings for the index:
>>> george = pd.Series([10, 7],

... index=['1968', '1969'],

... name='George Songs')

>>> george

1968 10

1969 7

Name: George Songs, dtype: int64

george’s index type is object (pandas indicates that strings index

entries are objects), note the dtype of the index attribute:

>>> george.index

Index(['1968', '1969'], dtype='object')

We have previously seen that indexes do not have to be unique. To
determine whether an index has duplicates, simply inspect the .is_unique

attribute on the index:
>>> dupe = pd.Series([10, 2, 7],

... index=['1968', '1968', '1969'],

... name='George Songs')

>>> dupe.index.is_unique

False

>>> george.index.is_unique

True

Much like numpy arrays, a Series object can be both indexed and

sliced along the axis. Indexing pulls out either a scalar or multiple values
(if there are non-unique index labels):
>>> george

1968 10

1969 7

Name: George Songs, dtype: int64

29

>>> george[0]

10

The indexing rules are somewhat complex. They behave more like a
dictionary, but in the case where a string index label (rather than integer
based indexing) is used, the behavior falls back to Python list indexing.
Yes, this is confusing. Some examples might help to clarify. The series
george has non-numeric indexes:

>>> george['1968']

10

This series can also be indexed by position (using integers) even though
it has string index entries! The first item is at key 0, and the last item is at

key -1:

>>> george[0]

10

>>> george[-1]

7

What is going on? Indexing with strings and integers!? Because this is
confusing and in Python, “explicit is better than implicit”, the pandas
documentation actually suggests indexing based off of the .loc and .iloc

attributes rather than indexing the object directly:

While standard Python / Numpy expressions for selecting and setting
are intuitive and come in handy for interactive work, for production
code, we recommend the optimized pandas data access methods, .at,

.iat, .loc, .iloc and .ix.

—pandas website 8

NOTE

As we have see, the result of an index operation may not be a scalar.
If the index labels are not unique, it is possible that the index
operation returns a sub-series rather than a scalar value:

>>> dupe

30

1968 10

1968 2

1969 7

Name: George Songs, dtype: int64

>>> dupe['1968']

1968 10

1968 2

Name: George Songs, dtype: int64

>>> dupe['1969']

7

This is a potential issue if you are assuming the result of your data
to be only scalar and have duplicate labels in the index.

NOTE

If the index is already using integer labels, then the fallback to
position based indexing does not work!:

>>> george_i = pd.Series([10, 7],

... index=[1968, 1969],

... name='George Songs')

>>> george_i[-1]

Traceback (most recent call last):

 ...

KeyError: -1

.iloc and .loc

The optimized data access methods are accessed by indexing off of the
.loc and .iloc attributes. These two attributes allow label-based and

position-based indexing respectively.
When we perform an index operation on the .iloc attribute, it does

lookup based on index position (in this case pandas behaves similar to a
Python list). pandas will raise an IndexError if there is no index at that

location:
>>> george.iloc[0]

10

>>> george.iloc[-1]

7

31

>>> george.iloc[4]

Traceback (most recent call last):

 ...

IndexError: single positional indexer is out-of-bounds

>>> george.iloc['1968']

Traceback (most recent call last):

 ...

TypeError: cannot do positional indexing on <class

'pandas.indexes.base.Index'> with these indexers [1968]

of <class 'str'>

In addition to pulling out a single item, we can slice just like in normal
Python:
>>> george.iloc[0:3] # slice

1968 10

1969 7

Name: George Songs, dtype: int64

Additional functionality not found in normal Python is indexing based
off of a list. You can pass in a list of index locations to the index
operation:
>>> george.iloc[[0,1]] # list

1968 10

1969 7

Name: George Songs, dtype: int64

.loc is supposed to be based on the index labels and not the positions.

As such, it is analogous to Python dictionary-based indexing. Though it
has some additional functionality, as it can accept boolean arrays, slices,
and a list of labels (none of which work with a Python dictionary):
>>> george.loc['1968']

10

>>> george.loc['1970']

Traceback (most recent call last):

 ...

KeyError: 'the label [1970] is not in the [index]'

>>> george.loc[0]

Traceback (most recent call last):

 ...

TypeError: cannot do label indexing on

<class 'pandas.indexes.base.Index'> with these

indexers [0] of <class 'int'>

>>> george.loc[['1968', '1970']] # list

1968 10.0

1970 NaN

Name: George Songs, dtype: float64

32

>>> george.loc['1968':] # slice

1968 10

1969 7

Name: George Songs, dtype: int64

If you get confused by .loc and .iloc, remember that .iloc is based

the index (starting with i) position. .loc is based on label (starting with l).

Figure showing how iloc and loc behave.

.at and .iat

The .at and .iat index accessors are analogous to .loc and .iloc. The

difference being that they will return a numpy.ndarray when pulling out a

duplicate value, whereas .loc and .iloc return a Series:

>>> george_dupe = pd.Series([10, 7, 1, 22],

... index=['1968', '1969', '1970', '1970'],

... name='George Songs')

>>> george_dupe.at['1970']

array([1, 22])

>>> george_dupe.loc['1970']

1970 1

1970 22

Name: George Songs, dtype: int64

.ix

.ix is similar to [] indexing. Because it tries to support both positional

and label based indexing, I advise against its’ use in general. It tends to
lead to confusing results and violates the notion that “explicit is better than
implicit”:
>>> george_dupe.ix[0]

33

10

>>> george_dupe.ix['1970']

1970 1

1970 22

Name: George Songs, dtype: int64

The case where .ix turns out to be useful is given in the pandas

documentation:

.ix is exceptionally useful when dealing with mixed positional and

label based hierachical indexes.

If you are using pivot tables, or stacking (as described later), .ix can be

useful. Note that the pandas documentation continues:

However, when an axis is integer based, only label based access and
not positional access is supported. Thus, in such cases, it’s usually
better to be explicit and use .iloc or .loc.

Indexing Summary

The following table summarizes the indexing methods and offers advice as
to when to use them:

METHOD WHEN TO USE

Attribute
access

Getting values for a single index name when the name is a valid
attribute name.

Index
access

Getting/setting values for a single index name when the name is not a
valid attribute names.

.iloc Getting/setting values by index position or location. (Half-open
interval for slices)

.loc Getting/setting values by index label. (Closed interval for slices)

.ix Getting/setting values by index label first, then falls back to position.
Avoid unless you have hierarchical indexes that mix position and label
indexes.

.iat Getting/setting numpy array results by index position.

.at Getting/setting numpy array results by index label.

34

Slicing

As mentioned, slicing can be performed on the index attributes—.iloc

and .loc. Slicing attempts to pull out a range of index locations, and the

result is a series, rather than a scalar item at a single index location
(assuming unique index keys).

Slices take the form of [start]:[end][:stride] where start, end, and

stride are integers and the square brackets represent optional values. The

table below explains slicing possibilities for .iloc:

SLICE RESULT

0:1 First item

:1 First item (start default is 0)

:-2 Take from the start up to the second to last item

::2 Take from start to the end skipping every other item

The following example returns the values found at index position zero
up to but not including index position two:
>>> george.iloc[0:2]

1968 10

1969 7

Name: George Songs, dtype: int64

Boolean Arrays

A slice using the result of a boolean operation is called a boolean array. It
returns a filtered series for which the boolean operation is evaluated.
Below a boolean array is assigned to a variable—mask:

>>> mask = george > 7

>>> mask

1968 True

1969 False

Name: George Songs, dtype: bool

NOTE

35

Boolean arrays might be confusing for programmers used to Python,
but not NumPy. Taking a series and applying an operation to each
value of the series is known as broadcasting. The > operation is

broadcasted, or applied, to every entry in the series. And the result is
a new series with the result of each of those operations. Because the
result of applying the greater than operator to each value returns a
boolean, the final result is a new series with the same index labels as
the original, but each value is True or False. This is referred to as a

boolean array.
We can perform other broadcasting operations to a series. Here we

increment the numerical values by adding two to them:
>>> george + 2

1968 12

1969 9

Name: George Songs, dtype: int64

When the mask is combined with an index operation, it returns a Series

where only the items in the same position as True are returned:

>>> george[mask]

1968 10

Name: George Songs, dtype: int64

36

Figure showing creation and application of a mask to a Series. (Note that the mask
itself is a Series as well).

Multiple boolean operations can be combined with the following
operations:

OPERATION EXAMPLE

And ser[a & b]

Or ser[a | b]

Not ser[~a]

A potential gotcha with boolean arrays is operator precedence. If the
masks are inlined into the index operation, it is best to surround them with
parentheses. Below are non-inlined masks which function fine:
>>> mask2 = george <= 2

>>> george[mask | mask2]

1968 10

37

Name: George Songs, dtype: int64

Yet, when the mask operation is inlined, we encounter problems. Below
is an example where operator precedence does not raise an error (it used to
prior to 0.14), but is wrong! We asked for song count greater than seven or
less than or equal to 2:
>>> george[mask | george <= 2]

1968 10

1969 7

Name: George Songs, dtype: int64

By wrapping the masks in parentheses, the correct order of operations is
used, and the result is correct:
>>> george[mask | (george <= 2)]

1968 10

Name: George Songs, dtype: int64

TIP

If you inline boolean array operations, make sure to surround them
with parentheses.

Summary

In this chapter, we looked at the index. Through index operations, we can
pull values out of a series. Because you can pull out values by both
position and label, indexing can be a little complicated. Using .loc and

.iloc allow you to be more explicit about indexing operations. We can

also use slicing to pull out values. This is a powerful construct that allows
use to be succinct in our code. In addition, we can also use boolean arrays
to filter data.

Note that the operations in this chapter also apply to DataFrames. In

future chapters we will see their application. In the next chapter, we will
examine some of the powerful methods that are built-in to the Series

object.

8 - http://pandas.pydata.org/pandas-docs/stable/10min.html

38

http://pandas.pydata.org/pandas-docs/stable/10min.html

Series Methods

A SERIES OBJECT HAS MANY ATTRIBUTES AND METHODS THAT ARE USEFUL FOR DATA

analysis. This section will cover a few of them.
In general, the methods return a new Series object. Most of the

methods returning a new instance also have an inplace or a copy

parameter. This is because the default behavior tends towards
immutability, and these optional parameters default to False and True

respectively.

NOTE

The inplace and copy parameters are the logical complement of each

other. Luckily, a method will only take one of them. This is one of
those slight inconsistencies found in the library. In practice,
immutability works out well and both of these parameters can be
ignored.

The examples in this chapter will use the following series. They contain
the count of Beatles songs attributed to individual band members in the
years 1966 and 1969:
>>> songs_66 = pd.Series([3, None , 11, 9],

... index=['George', 'Ringo', 'John', 'Paul'],

... name='Counts')

>>> songs_69 = pd.Series([18, 22, 7, 5],

... index=['John', 'Paul', 'George', 'Ringo'],

... name='Counts')

Iteration

Iteration over a series iterates over the values:

39

>>> for value in songs_66:

... print(value)

3.0

nan

11.0

9.0

There is an .iteritems method to loop over the index, value pairs:

>>> for idx, value in songs_66.iteritems():

... print(idx, value)

George 3.0

Ringo nan

John 11.0

Paul 9.0

NOTE

Python supports unpacking or destructuring during variable
assignment, which includes iteration (as seen in the example above).
The .iteritems method returns a sequence of index, value tuples. By

using unpacking, we can immediately put them each in their own
variables.

If Python did not support this feature, we would have to create an
intermediate variable to hold the tuple (which works but adds a few
more lines of code):

>>> for items in songs_66.iteritems():

... idx = items[0]

... value = items[1]

... print(idx, value)

George 3.0

Ringo nan

John 11.0

Paul 9.0

A .keys method is provided as a shortcut to the index as well:

>>> for idx in songs_66.keys():

... print(idx)

George

Ringo

John

Paul

Unlike the .keys method of a Python dictionary, the result is ordered.

Overloaded operations

40

The table below lists overloaded operations for a Series object. The

operations behave in a special way for pandas objects that might be
different than other Python objects respond to these operations:

OPERATION RESULT

+ Adds scalar (or series with matching index values) returns Series

- Subtracts scalar (or series with matching index values) returns
Series

/ Divides scalar (or series with matching index values) returns Series

// “Floor” Divides scalar (or series with matching index values)
returns Series

* Multiplies scalar (or series with matching index values) returns
Series

% Modulus scalar (or series with matching index values) returns
Series

==, != Equality scalar (or series with matching index values) returns
Series

>, < Greater/less than scalar (or series with matching index values)
returns Series

>=, <= Greater/less than or equal scalar (or series with matching index
values) returns Series

^ Binary XOR returns Series

| Binary OR returns Series

& Binary AND returns Series

The common arithmetic operations for a series are overloaded to work
with both scalars and other series objects. Addition with a scalar (assuming
numeric values in the series) simply adds the scalar value to the values of
the series. Adding a scalar to a series is called broadcasting:
>>> songs_66 + 2

George 5.0

Ringo NaN

John 13.0

Paul 11.0

Name: Counts, dtype: float64

41

NOTE

Broadcasting is a NumPy and pandas feature. A normal Python list
supports some of the operations listed in the prior table, but not in the
elementwise manner that NumPy and pandas objects do. When you
multiply a Python list by two, the result is a new list with the
elements repeated, not each element multiplied by two:

>>> [1, 3, 4] * 2

[1, 3, 4, 1, 3, 4]

To multiply every element in a list by two using idiomatic Python,
one would use a list comprehension:

>>> [x*2 for x in [1, 3, 4]]

[2, 6, 8]

Addition with two series objects adds only those items whose index
occurs in both series, otherwise it inserts a NaN for index values found only

in one of the series. Note that though Ringo appears in both indices, he has
a value of NaN in songs_66 (leading to NaN as the result of the addition

operation):
>>> songs_66 + songs_69

George 10.0

John 29.0

Paul 31.0

Ringo NaN

Name: Counts, dtype: float64

NOTE

The above result might be problematic. Should the count of Ringo
songs really be unknown? In this case, we use the fillna method to

replace NaN with zero and give us a better answer:

>>> songs_66.fillna(0) + songs_69.fillna(0)

George 10.0

John 29.0

Paul 31.0

Ringo 5.0

Name: Counts, dtype: float64

42

The other arithmetic operations behave similarly for -, *, and /.

Multiplying song counts for two years really doesn’t make sense, but
pandas supports it:
>>> songs_66 - songs_69

George -4.0

John -7.0

Paul -13.0

Ringo NaN

Name: Counts, dtype: float64

>>> songs_66 * songs_69

George 21.0

John 198.0

Paul 198.0

Ringo NaN

Name: Counts, dtype: float64

Getting and Setting Values

The series object allows for access to values by index operations (with
.loc and .iloc) and convenience methods. The methods for getting and

setting values at index labels are listed in the table below:

METHOD RESULT

get(label,

[default])

Returns a scalar (or Series if duplicate indexes) for label or
default on failed lookup.

get_value(label) Returns a scalar (or Series if duplicate indexes) for label

set_value(label,

value)

Returns a new Series with label and value inserted (or
updated)

Let’s examine getting and setting data with both operations:
>>> songs_66

George 3.0

Ringo NaN

John 11.0

Paul 9.0

Name: Counts, dtype: float64

>>> songs_66['John']

11.0

>>> songs_66.get_value('John')

11.0

43

There is another trick up pandas’ sleeve. It supports dotted attribute
access for index names that are valid attribute names (and don’t conflict
with pre-existing series attributes):
>>> songs_66.John

11.0

NOTE

Valid attribute names are names that begin with letters, and contain
alphanumerics or underscores. If an index name contains spaces, you
couldn’t use dotted attribute access to read it, but index access would
work fine:

>>> songs_lastname = pd.Series([3, 11],

... index=['George H', 'John L'])

>>> songs_lastname.George H

Traceback (most recent call last):

 ...

 songs_lastname.George H

 ^

SyntaxError: invalid syntax

>>> songs_lastname['George H']

3

If an index name conflicts with an existing series method or
attribute, dotted access fails:

>>> nums = pd.Series([4, 10],

... index=['count', 'median'])

>>> nums.count

<bound method Series.count of count 4

median 10

dtype: int64>

>>> nums['count']

4

Dotted attribute access is a handy shortcut to eliminate a few
keystrokes, but if your aren’t careful, you might get unexpected
results. Index operations, on the other hand, should always work.

44

As a convenience, .get (similar to .get on a native Python dictionary)

is provided. It provides an optional parameter to return should the lookup
fail:
>>> songs_66.get('Fred', 'missing')

'missing'

The .get_value method raises an exception if the index value is

missing:
>>> songs_66.get_value('Fred')

Traceback (most recent call last):

 ...

KeyError: 'Fred'

There are various mechanisms to perform assignment on a pandas
series. Assignment that occurs with .__setitem__ updates the series in

place, but does not return a series:
>>> songs_66['John'] = 82

>>> songs_66['John']

82.0

Dotted attribute setting works as well, given a valid attribute name:
>>> songs_66.John = 81

>>> songs_66.John

81.0

NOTE

The Python language gives you great flexibility. But with that
flexibility comes responsibility. Paraphrasing Spiderman here, but
because dotted attribute setting is possible, one can overwrite some of
the methods and attributes of a series.

Below is a series that has various index names. normal is a

perfectly valid name. median is a fine name, but is also the name of

the method for calculating the median. class is another name that

would be fine if wasn’t a reserved name in Python. The final is the
name of series attribute that pandas tries to protect:

>>> ser = pd.Series([1, 2, 3, 4],

... index=['normal', 'median', 'class', 'index'])

45

We can overwrite the first two index names:
>>> ser.normal = 4

>>> ser.median = 5

But trying to overwrite the reserved word throws an error:
>>> ser.class = 6

Traceback (most recent call last):

 ...

 ser.class = 6

 ^

SyntaxError: invalid syntax

Setting the index index also fails:

>>> ser.index = 7

Traceback (most recent call last):

 ...

TypeError: Index(...) must be called with a collection of

some kind, 7 was passed

When you go back to access the values you might be surprised.
Only normal was updated. The write to `median silently failed:

>>> ser

normal 4

median 2

class 3

index 4

dtype: int64

My recommendation is to stay away from dotted attribute setting.
If you are new to Python and not familiar with the keywords, the

module keyword has a kwlist attribute. This attribute is a list

containing all the current keywords for Python:
>>> import keyword

>>> print(keyword.kwlist)

['False', 'None', 'True', 'and',

'as', 'assert', 'break', 'class',

'continue', 'def', 'del', 'elif',

'else', 'except', 'finally', 'for',

'from', 'global', 'if', 'import',

'in', 'is', 'lambda', 'nonlocal',

'not', 'or', 'pass', 'raise',

'return', 'try', 'while', 'with',

'yield']

The .set_value method updates the series in place and returns a series:

46

>>> songs_66.set_value('John', 80)

George 3.0

Ringo NaN

John 80.0

Paul 9.0

Name: Counts, dtype: float64

>>> songs_66['John']

80.0

Also, .set_value will update all the values for a given index. If you

have non-unique indexes and only want to update one of the values for a
repeated index, this cannot be done via .set_value.

TIP

One way to update only one value for a repeated index label is to
update by position. The following series repeats the index label 1970:

>>> george = pd.Series([10, 7, 1, 22],

... index=['1968', '1969', '1970', '1970'],

... name='George Songs')

>>> george

1968 10

1969 7

1970 1

1970 22

Name: George Songs, dtype: int64

To update only the first value for 1970, use the .iloc index

assignment:
>>> george.iloc[2] = 3

>>> george

1968 10

1969 7

1970 3

1970 22

Name: George Songs, dtype: int64

A quick method of to retrieve the index positions for values is to
use a list comprehension on the .iteritems method in combination

with the built-in enumerate function:

>>> [pos for pos, x in enumerate(george.iteritems()) \

... if x[0] == '1970']

[2, 3]

47

Reset Index

Because selection, plotting, joining, and other methods can be determined
by the index, often it is useful to change the values of the index. We will
examine a few of the methods to reset the index, change which index
labels are present, and rename the labels of the index. The first,
.reset_index, will reset the index to monotonically increasing integers

starting from zero. By default, the .reset_index method will return a new

data frame (not a series). It moves the current index values to a column
named index:

>>> songs_66.reset_index()

 index Counts

0 George 3.0

1 Ringo NaN

2 John 80.0

3 Paul 9.0

To get a series out, pass True to the drop parameter, which will drop the

index column:

>>> songs_66.reset_index(drop=True)

0 3.0

1 NaN

2 80.0

3 9.0

Name: Counts, dtype: float64

If a specific index order is desired, it may be passed to the .reindex

method. The index of the result will be conformed to the index passed in.
New index values will have a value of the optional parameter fill_value

(which defaults to NaN):

>>> songs_66.reindex(['Billy', 'Eric', 'George', 'Yoko'])

Billy NaN

Eric NaN

George 3.0

Yoko NaN

Name: Counts, dtype: float64

Alternatively, the values of the index can be updated with the .rename

method. This method accepts either a dictionary mapping index labels to
new labels, or a function that accepts a label and returns a new one:
>>> songs_66.rename({'Ringo':'Richard'})

48

George 3.0

Richard NaN

John 80.0

Paul 9.0

Name: Counts, dtype: float64

>>> songs_66.rename(lambda x: x.lower())

george 3.0

ringo NaN

john 80.0

paul 9.0

Name: Counts, dtype: float64

As a poor-man's solution, the index attribute can be changed under the

covers. This works as well, and pandas will convert a list into an actual
Index object. The problem with such interactions is that it is treating the

series as mutable, when most methods do not. In the author’s opinion, it is
safer to use the methods described above:
>>> idx = songs_66.index

>>> idx

Index(['George', 'Ringo', 'John', 'Paul'], dtype='object')

>>> idx2 = range(len(idx))

>>> list(idx2)

[0, 1, 2, 3]

>>> songs_66.index = idx2

>>> songs_66

0 3.0

1 NaN

2 80.0

3 9.0

Name: Counts, dtype: float64

>>> songs_66.index

RangeIndex(start=0, stop=4, step=1)

NOTE

The above code explicitly calls the list function on idx2 because the

author is using Python 3 in the examples in this book. In Python 3,
range is an iterable that does not materialize the contents of the

sequence until it is iterated over. It behaves similar to Python 2's
xrange built-in.

This code (as with most of the code in this book) will still work in
Python 2.

49

Counts

This section will explore how to get an overview of the data found in a
series. For the following examples we will use two series. The songs_66

series:
>>> songs_66 = pd.Series([3, None , 11, 9],

... index=['George', 'Ringo', 'John', 'Paul'],

... name='Counts')

>>> songs_66

George 3.0

Ringo NaN

John 11.0

Paul 9.0

Name: Counts, dtype: float64

And the scores_2 series:

>>> scores2 = pd.Series([67.3, 100, 96.7, None, 100],

... index=['Ringo', 'Paul', 'George', 'Peter', 'Billy'],

... name='test2')

>>> scores2

Ringo 67.3

Paul 100.0

George 96.7

Peter NaN

Billy 100.0

Name: test2, dtype: float64

A few methods are provided to get a feel for the counts of the entries,
how many are unique, and how many are duplicated. Given a series, the
.count method returns the number of non-null items. The scores2 series

has 5 entries but one of them is None, so .count only returns 4:

>>> scores2.count()

4

Histogram tables are easy to generate in pandas. The .value_counts

method returns a series indexed by the values found in the series. If you
think of a series as an ordered mapping of index keys to values,
.value_counts returns a mapping of those values to their counts, ordered

by frequency:
>>> scores2.value_counts()

100.0 2

67.3 1

50

96.7 1

Name: test2, dtype: int64

To get the unique values or the count of non-NaN items use the .unique

and .nunique methods respectively. Note that .unique includes the nan

value, but .nunique does not count it:

>>> scores2.unique()

array([67.3, 100. , 96.7, nan])

>>> scores2.nunique()

3

Dealing with duplicate values is another feature of pandas. To drop
duplicate values use the .drop_duplicates method. Since Billy has the

same score as Paul, he will get dropped:

>>> scores2.drop_duplicates()

Ringo 67.3

Paul 100.0

George 96.7

Peter NaN

Name: test2, dtype: float64

To retrieve a series with boolean values indicating whether its value was
repeated, use the .duplicated method:

>>> scores2.duplicated()

Ringo False

Paul False

George False

Peter False

Billy True

Name: test2, dtype: bool

To drop duplicate index entries requires a little more effort. Lets create a
series, scores3, that has 'Paul' in the index twice. If we use the .groupby

method, and group by the index, we can then take the first or last item
from the values for each index label:
>>> scores3 = pd.Series([67.3, 100, 96.7, None, 100, 79],

... index=['Ringo', 'Paul', 'George', 'Peter', 'Billy',

... 'Paul'])

>>> scores3.groupby(scores3.index).first()

Billy 100.0

George 96.7

Paul 100.0

Peter NaN

Ringo 67.3

dtype: float64

51

>>> scores3.groupby(scores3.index).last()

Billy 100.0

George 96.7

Paul 79.0

Peter NaN

Ringo 67.3

dtype: float64

Statistics

There are many basic statistical measures in a series object’s methods. We
will look at a few of them in this section.

One of the most basic measurements is the sum of the values in a series:
>>> songs_66.sum()

23.0

NOTE

Most of the methods that perform a calculation ignore NaN. Some also

provide an optional parameter—skipna—to change that behavior.

But in practice if you do not ignore NaN, the result is nan:

>>> songs_66.sum(skipna=False)

nan

Calculating the mean (the “expected value” or average) and the median
(the “middle” value at 50% that separates the lower values from the upper
values) is simple. As discussed, both of these methods ignore NaN (unless

skipna is set to False):

>>> songs_66.mean()

7.666666666666667

>>> songs_66.median()

9.0

For non-normal distributions, the median is useful as a summary
measure. It is more resilient to outliers. In addition, quantile measures can
be used to predict the 50% value (the default) or any level desired, such as
the 10th and 90th percentile. The default quantile calculation should be
very similar to the median:

52

>>> songs_66.quantile()

9.0

>>> songs_66.quantile(.1)

4.2000000000000002

>>> songs_66.quantile(.9)

10.6

To get a good overall feel for the series, the .describe method presents

a good number of summary statistics and returns the result as a series. It
includes the count of values, their mean, standard deviation, minimum and
maximum values, and the 25%, 50%, and 75% quantiles:
>>> songs_66.describe()

count 3.000000

mean 7.666667

std 4.163332

min 3.000000

25% 6.000000

50% 9.000000

75% 10.000000

max 11.000000

Name: Counts, dtype: float64

You can pass in specific percentiles if you so desire with the
percentiles parameter:

>>> songs_66.describe(percentiles=[.05, .1, .2])

count 3.000000

mean 7.666667

std 4.163332

min 3.000000

5% 3.600000

10% 4.200000

20% 5.400000

50% 9.000000

max 11.000000

Name: Counts, dtype: float64

The series also has methods to find the minimum and maximum for the
values, .min and .max. In addition, there are methods to get the index

location of the minimum and maximum index labels, .idxmin and

.idxmax:

>>> songs_66.min()

3.0

>>> songs_66.idxmin()

'George'

>>> songs_66.max()

11.0

53

>>> songs_66.idxmax()

'John'

The rest of this section briefly lists other statistical measures. Wikipedia
is a great resource for a more thorough explanation of these. As
statisticians tend to be precise, the articles found there are well curated.

Though the minimum and maximum are interesting values, often they
are outliers. In that case, it is useful to find the spread of the values taking
into account the notion of outliers. Variance is one of these measures. A
low variance indicates that most of the values are close to the mean:
>>> songs_66.var()

17.333333333333329

The square root of the variance is known as the standard deviation. This
is also a common measure to indicate spread from the mean. In a normal
distribution, 99% of the values will be within three standard deviations
above and below the mean:
>>> songs_66.std()

4.1633319989322652

Another summary statistic for describing dispersion is the mean
absolute deviation. In pandas this is calculated by averaging the absolute
values of the difference between the mean and the values:
>>> songs_66.mad()

3.1111111111111107

Skew is a summary statistic that measures how the tails behave. A
normal distribution should have a skew around 0. A negative skew
indicates that the left tail is longer, whereas a positive skew indicates that
the right tail is longer. Below is a plot of the histogram:
>>> import matplotlib.pyplot as plt

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> songs_66.hist(ax=ax)

>>> fig.savefig('/tmp/song-hist.png')

54

A histogram that illustrates negative skew

In this case the sample size is so low that it is hard to say much about
the data. But the numbers say a negative skew:
>>> songs_66.skew()

-1.293342780733397

Kurtosis is a summary measure that describes how narrow the “peak” of
is distribution is. The larger the number, the narrower the peak is.
Normally, this value is reported alongside skew. The .kurt method returns

nan if there are fewer than four numbers:

>>> songs_66.kurt()

nan

Covariance is a measure of how two variables change together. If they
tend to increase together, it will be positive. If one tends to decrease while
the other increases, it will be negative:
>>> songs_66.cov(songs_69)

28.333333333333332

55

When the covariance is normalized (by dividing by the standard
deviations of both series), it is called the correlation coefficient. The .corr

method gives the Pearson Correlation Coefficient. This value is a number
from -1 to 1. The more positive this value is, the greater the correlation.
The more negative it is, the greater the inverse correlation. A value of zero
indicates no correlation:
>>> songs_66.corr(songs_69)

0.87614899364978038

The autocorrelation measure describes the correlation of a series with
itself shifted one position. 1 indicates perfect correlation, and -1 indicates
anti-correlation. Here is another case where the sample size is small, so
take these with a grain of salt. Note that .autocorr does not ignore NaN

by default:
>>> songs_66.autocorr()

nan

>>> songs_66.dropna().autocorr()

-0.99999999999999989

The first discrete difference of a series is available as well:
>>> songs_66.diff()

George NaN

Ringo NaN

John NaN

Paul -2.0

Name: Counts, dtype: float64

Often, the cumulative sum of a series is needed. The .cumsum method

provides this. In addition, there are analogous operations for cumulative
product and cumulative minimum:
>>> songs_66.cumsum()

George 3.0

Ringo NaN

John 14.0

Paul 23.0

Name: Counts, dtype: float64

>>> songs_66.cumprod()

George 3.0

Ringo NaN

John 33.0

Paul 297.0

Name: Counts, dtype: float64

56

>>> songs_66.cummin()

George 3.0

Ringo NaN

John 3.0

Paul 3.0

Name: Counts, dtype: float64

Convert Types

The series object has the ability to tweak its values. The numerical values
in a series may be rounded up to the next whole floating point number by
using the .round method:

>>> songs_66.round()

George 3.0

Ringo NaN

John 11.0

Paul 9.0

Name: Counts, dtype: float64

Note that even though the value is rounded, the type is still a float.
Numbers can be clipped between lower and upper thresholds using the

.clip method. This method does not change the type either:

>>> songs_66.clip(lower=80, upper=90)

George 80.0

Ringo NaN

John 80.0

Paul 80.0

Name: Counts, dtype: float64

The .astype method attempts to convert values to the type passed in. In

the instance below, the float values are being converted to strings. To the
unwary, there does not appear to be much change other than the dtype

changing to object:

>>> songs_66.astype(str)

George 3.0

Ringo

John 11.0

Paul 9.0

Name: Counts, dtype: object

But, if a method is invoked on the converted string values, the result
might not be the desired output. In this case .max now returns the

lexicographic maximum:
>>> songs_66.astype(str).max()

'nan'

57

There is also a .convert_objects method in pandas that behaves

similarly to .astype, but it has been deprecated, as of version 0.17. The

current recommendation for type conversion is to use the following
methods:

FINAL TYPE METHOD

string use .astype(str)

numeric use pd.to_numeric

integer use .astype(int), note that this will fail with NaN

datetime use pd.to_datetime

By default, the to_* functions will raise an error if they cannot coerce.

In the case below, the to_numeric function cannot convert nan to a float.

This is slightly annoying:
>>> pd.to_numeric(songs_66.apply(str))

Traceback (most recent call last):

 ...

ValueError: Unable to parse string

Luckily, the to_numeric function has an errors parameter, that when

passed 'coerce' will fill in with NaN if it cannot coerce:

>>> pd.to_numeric(songs_66.astype(str), errors='coerce')

George 3.0

Ringo NaN

John 11.0

Paul 9.0

Name: Counts, dtype: float64

The to_datetime function also behaves similarly, and also raises errors

when it fails to coerce:
>>> pd.to_datetime(pd.Series(['Sep 7, 2001',

... '9/8/2001', '9-9-2001', '10th of September 2001',

... 'Once de Septiembre 2001']))

Traceback (most recent call last):

 ...

ValueError: Unknown string format

If we pass errors='coerce', we can see that it supports many formats

if, but not Spanish:

58

>>> pd.to_datetime(pd.Series(['Sep 7, 2001',

... '9/8/2001', '9-9-2001', '10th of September 2001',

... 'Once de Septiembre 2001']), errors='coerce')

0 2001-09-07

1 2001-09-08

2 2001-09-09

3 2001-09-10

4 NaT

dtype: datetime64[ns]

Dealing with None

As mentioned previously, the NaN value is usually disregarded in

calculations. Sometimes, it is useful to fill them in with another value. The
.fillna method will replace them with a given value, -1 in this case:

>>> songs_66.fillna(-1)

George 3.0

Ringo -1.0

John 11.0

Paul 9.0

Name: Counts, dtype: float64

NaN values can be dropped from the series using .dropna:

>>> songs_66.dropna()

George 3.0

John 11.0

Paul 9.0

Name: Counts, dtype: float64

Another way to get the non-NaN values (or the complement) is to create

a boolean array of the values that are not NaN. With this array in hand, we

can use it to mask the series. The .notnull method gives us this boolean

array:
>>> val_mask = songs_66.notnull()

>>> val_mask

George True

Ringo False

John True

Paul True

Name: Counts, dtype: bool

>>> songs_66[val_mask]

George 3.0

John 11.0

Paul 9.0

Name: Counts, dtype: float64

If we want the mask for the NaN positions, we can use .isnull:

59

>>> nan_mask = songs_66.isnull()

>>> nan_mask

George False

Ringo True

John False

Paul False

Name: Counts, dtype: bool

>>> songs_66[nan_mask]

Ringo NaN

Name: Counts, dtype: float64

NOTE

We can flip a boolean mask by applying the not operator (~):

>>> ~nan_mask

George True

Ringo False

John True

Paul True

Name: Counts, dtype: bool

So, songs_66.isnull() is equivalent to ~songs_66.notnull().

Locating the position of the first and last valid index values is simple as
well, using the .first_valid_index and .last_valid_index methods

respectively:
>>> songs_66.first_valid_index()

'George'

>>> songs_66.last_valid_index()

'Paul'

Matrix Operations

Computing the dot product is available through the .dot method. But, this

method fails if NaN is part of the series:

>>> songs_66.dot(songs_69)

nan

Removing NaN will give a value for .dot:

>>> songs_66.dropna().dot(songs_66.dropna())

211.0

60

A series also has a .transpose method (alternatively invoked as the T

property) that is actually a no-op and just returns the series. (In the two
dimensional data frame, the columns and rows are transposed):
>>> songs_66.T

George 3.0

Ringo NaN

John 11.0

Paul 9.0

Name: Counts, dtype: float64

>>> songs_66.transpose()

George 3.0

Ringo NaN

John 11.0

Paul 9.0

Name: Counts, dtype: float64

Append, combining, and joining two series

To concatenate two series together, simply use the .append method.

Unlike the .append method of a Python list which takes a single item to be

appended to the list, this method takes another Series object as its’

parameter:
>>> songs_66.append(songs_69)

George 3.0

Ringo NaN

John 11.0

Paul 9.0

John 18.0

Paul 22.0

George 7.0

Ringo 5.0

Name: Counts, dtype: float64

The .append method will create duplicate indexes by default (as seen by

the multiple entries for Paul above). .append has an optional parameter,

verify_integrity, which when set to True to complain if index values

are duplicated:
>>> songs_66.append(songs_69, verify_integrity=True)

Traceback (most recent call last):

 ...

ValueError: Indexes have overlapping values: ['George',

'John', 'Paul', 'Ringo']

To perform element-wise operations on series, use the .combine

method. It takes another series, and a function as its’ parameters. The

61

function should accept two parameters and perform a reduction on them.
Below is one way to compute the average of two series using .combine:

>>> def avg(v1, v2):

... return (v1 + v2)/2.0

>>> songs_66.combine(songs_69, avg)

George 5.0

John 14.5

Paul 15.5

Ringo NaN

Name: Counts, dtype: float64

To update values from one series, use the .update method. It accepts a

new series and will return a series that has replaced the values using the
passed in series:
>>> songs_66.update(songs_69)

>>> songs_66

George 7.0

Ringo 5.0

John 18.0

Paul 22.0

Name: Counts, dtype: float64

NOTE

.update is another method that is an anomaly from most other pandas

methods. It behaves similarly to the .update method of a native

Python dictionary—it does not return anything and updates the
values in place. Tread with caution.

The .repeat method simply repeats every item a desired amount:

>>> songs_69.repeat(2)

John 18

John 18

Paul 22

Paul 22

George 7

George 7

Ringo 5

Ringo 5

Name: Counts, dtype: int64

Sorting

62

There are various methods for sorting that we will examine. Be careful
with the .sort method. This method provides an in-place sort based on the

values. If you are merrily programming along, and re-assigning the series
object with each method invocation (due to the general immutability of
Series), this will fail. This method has no return value, and is provided to

have some compatibility with NumPy:
>>> songs_66

George 7.0

Ringo 5.0

John 18.0

Paul 22.0

Name: Counts, dtype: float64

>>> orig = songs_66.copy()

>>> songs_66.sort()

>>> songs_66

Ringo 5.0

George 7.0

John 18.0

Paul 22.0

Name: Counts, dtype: float64

As the .sort method behaves differently from most pandas methods, it

has been deprecated in version 0.17. The suggested replacement is the
.sort_values method. That method returns a new series:

>>> orig.sort_values()

Ringo 5.0

George 7.0

John 18.0

Paul 22.0

Name: Counts, dtype: float64

NOTE

The .sort_values exposes a kind parameter. The default value is

'quicksort', which is generally fast. Another option to pass to kind

is 'mergesort'. When this is passed, .sort_values performs a stable

sort (so that items that sort in the same position will not move relative
to one another) when this method is invoked. Here's a small example:

>>> s = pd.Series([2, 2, 2], index=['a2', 'a1', 'a3'])

63

Note that a mergesort does not re-arrange items that are already
ordered correctly (in this case everything is already ordered):

>>> s.sort_values(kind='mergesort')

a2 2

a1 2

a3 2

dtype: int64

Other sorting kinds might re-order rows (see that a2 is moved to

the bottom in this heapsort example):
>>> s.sort_values(kind='heapsort')

a1 2

a3 2

a2 2

dtype: int64

Note that it is possible that a heapsort (or any non-mergesort)
might not re-arrange the ordered rows, but consider this luck, and
don't rely on that behavior if you need a stable sort.

This .sort_values method also supports the ascending parameter that

flips the order of the sort:
>>> songs_66.sort_values(ascending=False)

Paul 22.0

John 18.0

George 7.0

Ringo 5.0

Name: Counts, dtype: float64

NOTE

The .order method in pandas is similar to .sort and .sort_values.

It is deprecated as of 0.18, so please use .sort_values instead.

The .sort_index method does not operate in place and returns a new

series. It has an optional parameter, ascending that will reverse the index

if desired:
>>> songs_66.sort_index()

George 7.0

John 18.0

64

Paul 22.0

Ringo 5.0

Name: Counts, dtype: float64

>>> songs_66.sort_index(ascending=False)

Ringo 5.0

Paul 22.0

John 18.0

George 7.0

Name: Counts, dtype: float64

Another useful sorting related method is .rank. This method ranks the

index by the values of the entries. It assigns equal weights for ties. It also
supports the ascending parameter to reverse the order:

>>> songs_66.rank()

Ringo 1.0

George 2.0

John 3.0

Paul 4.0

Name: Counts, dtype: float64

Applying a function

Often the values in a series will need to be altered, cleaned up, checked, or
have an arbitrary function applied to them. The .map method applies a

function to every item in the series. Below is a function, format, that

creates a string that appends song or songs to the number depending on

the count:
>>> def format(x):

... if x == 1:

... template = '{} song'

... else:

... template = '{} songs'

... return template.format(x)

>>> songs_66.map(format)

Ringo 5.0 songs

George 7.0 songs

John 18.0 songs

Paul 22.0 songs

Name: Counts, dtype: object

In addition to accepting a function, the .map function also accepts a

dictionary. In that case, any value of the series matching a key in the
dictionary will be updated to the corresponding value for the key:
>>> songs_66.map({5: None,

... 18.: 21,

... 22.: 23})

65

Ringo NaN

George NaN

John 21.0

Paul 23.0

Name: Counts, dtype: float64

Similarly, the .map will accept a series, treating it much like a

dictionary. Any value of the series that matches the passed in index value
will be updated to the corresponding value:
>>> mapping = pd.Series({22.: 33})

>>> mapping

22.0 33

dtype: int64

>>> songs_66.map(mapping)

Ringo NaN

George NaN

John NaN

Paul 33.0

Name: Counts, dtype: float64

There is also an .apply method on the series object. It behaves very

similar to .map, but it only works with functions (not with series nor

dictionaries).

Serialization

We have seen examples that create a Series object from a list, a

dictionary, or another series. In addition, a series will serialize to and from
a CSV file.

To save a series as a CSV file, simply pass a file object to the .to_csv

method. The following example shows how this is done with a StringIO

object (it implements the file interface, but allows us to easily inspect the
results):
>>> from io import StringIO

>>> fout = StringIO()

>>> songs_66.to_csv(fout)

>>> print(fout.getvalue())

Ringo,5.0

George,7.0

John,18.0

Paul,22.0

NOTE

66

Some of the intentions of Python 3 were to make things consistent
and clean up warts or annoyances in Python 2. Python 3 created an io

module to handle reading and writing from streams. In Python 2 the
import above should be:

>>> from StringIO import StringIO

To use a real file, the current best practice in Python is to use a context
manager. This will automatically close the file for you when the indented
block exits:
>>> with open('/tmp/songs_66.csv', 'w') as fout:

... songs_66.to_csv(fout)

Upon closer examination of the serialized output, we see that the
headers are missing. Pass in the header=True parameter to include headers

in the output:
>>> fout = StringIO()

>>> songs_66.to_csv(fout, header=True)

>>> print(fout.getvalue())

,Counts

Ringo,5.0

George,7.0

John,18.0

Paul,22.0

As shown above, now the label for the index is missing. To remedy that,
use the index_label parameter:

>>> fout = StringIO()

>>> songs_66.to_csv(fout, header=True, index_label='Name')

>>> print(fout.getvalue())

Name,Counts

Ringo,5.0

George,7.0

John,18.0

Paul,22.0

NOTE

The name of the series must be specified for the header of the values
to appear. This can be passed in as a parameter during creation.
Alternatively you can set the .name attribute of the series.

67

Below is a buggy attempt to create a series from a CSV file, using the
.from_csv method:

>>> fout.seek(0)

>>> series = pd.Series.from_csv(fout)

>>> series

Name Counts

Ringo 5.0

George 7.0

John 18.0

Paul 22.0

dtype: object

In this case, the values of the series are strings (notice the dtype:

object). This is because the header was parsed as a value, and not as a

header. The pandas parsing code was not able to coerce test2 into a

numerical value, and assumed the column had string values. Here is a
second attempt that reads it the data as numerics and uses line zero as the
header:
>>> fout.seek(0)

>>> series = pd.Series.from_csv(fout, header=0)

>>> series

Name

Ringo 5.0

George 7.0

John 18.0

Paul 22.0

Name: Counts, dtype: float64

Note that the .name attribute is recovered as well:

>>> series.name

'Counts'

NOTE

In practice, when dealing with data frames, the read_csv function is

used, rather than invoking the .from_csv classmethod on Series or

DataFrame. The result of this function is a DataFrame rather than a

Series:

>>> fout.seek(0)

>>> df = pd.read_csv(fout, index_col=0)

>>> df

68

 Counts

Name

Ringo 5.0

George 7.0

John 18.0

Paul 22.0

We can pull the Counts column out of the df data frame to create a

Series. The Counts column contains floats now as the read_csv

function expects header columns by default (unlike the series
method), and tries to figure out types:

>>> df['Counts']

Name

Ringo 5.0

George 7.0

John 18.0

Paul 22.0

Name: Counts, dtype: float64

String operations

A series that has string data can be manipulated by vectorized string
operations. Though it is possible to accomplish these same operations via
the .map or .apply methods, prudent users will first look to see if a built-in

method is provided. Typically, built-in methods will be faster because they
are vectorized and often implemented in Cython, so there is less overhead.
Using .map and .apply should be thought of as a last resort, instead of the

first tool you reach for.
To invoke the string operations, simply invoke them on the .str

attribute of the series:
>>> names = pd.Series(['George', 'John', 'Paul'])

>>> names.str.lower()

0 george

1 john

2 paul

dtype: object

>>> names.str.findall('o')

0 [o]

1 [o]

2 []

dtype: object

69

As noted, the previous operations are also possible using the .apply

method, though the vectorized operations are faster:
>>> def lower(val):

... return val.lower()

>>> names.apply(lower)

0 george

1 john

2 paul

dtype: object

The following vectorized string methods are available and should be
familiar to anyone with experience with the methods of native Python
strings:

METHOD RESULT

cat Concatenate list of strings onto items

center Centers strings to width

contains Boolean for whether pattern matches

count Count pattern occurs in string

decode Decode a codec encoding

encode Encode a codec encoding

endswith Boolean if strings end with item

findall Find pattern in string

get Attribute access on items

join Join items with separator

len Return length of items

lower Lowercase the items

lstrip Remove whitespace on left of items

match Find groups in items from the pattern

pad Pad the items

repeat Repeat the string a certain number of times

replace Replace a pattern with a new value

rstrip Remove whitespace on the right of items

slice Pull out slices from strings

70

split Split items by pattern

startswith Boolean if strings starts with item

strip Remove whitespace from the items

title Titlecase the items

upper Uppercase the items

Summary

This has been a long chapter. That is because there are a lot of methods on
the Series object. We have looked at looping over the values, overloaded

operations, accessing values, changing the index, basics stats, coercion,
dealing with missing values and more. You should have a good
understanding of the power of the Series. In the next chapter, we will

look at how to plot with a Series.

71

Series Plotting

THE SERIES OBJECT HAS A LOT OF BUILT-IN FUNCTIONALITY. IN ADDITION TO THE

rich functionality previously mentioned, they also have the ability to create
plots using integration with matplotlib 9.

For this section, we will use the following values for songs_69:

>>> songs_69.name = 'Counts 69'

>>> songs_69

John 18

Paul 22

George 7

Ringo 5

Name: Counts 69, dtype: int64

And these values for songs_66:

>>> songs_66.name = 'Counts 66'

>>> songs_66['Eric'] = float('nan')

>>> songs_66

Ringo 5.0

George 7.0

John 18.0

Paul 22.0

Eric NaN

Name: Counts 66, dtype: float64

Note that the index values have some overlap and that there is a NaN

value as well.
The .plot method plots the index against value. If you are running from

IPython or an interpreter, a matplotlib plot will appear when calling that
method. In this case of the examples in the book, we are saving the plot as
a png file which requires a bit more boilerplate. (The matplotlib.pyplot

library needs to be loaded and a Figure object needs to be created

(plt.figure()) so we can call the .savefig method on it.)

Below is the code that shows default plots for both of the series. The
call to plt.legend() will insert a legend in the plot. The code also saves

72

the graph as a png file:
>>> import matplotlib.pyplot as plt

>>> fig = plt.figure()

>>> songs_69.plot()

>>> songs_66.plot()

>>> plt.legend()

>>> fig.savefig('/tmp/ex1.png')

Plotting two series that have string indexes. The default plot type is a line plot.

By default, .plot creates line charts, but it can also create bar charts by

changing the kind parameter. The bar chart is not stacked by default, so

the bars will occlude one another. We address this in the example below
by setting color for scores2 to black ('k') and lowering the transparency

by setting the alpha parameter:

>>> fig = plt.figure()

>>> songs_69.plot(kind='bar')

>>> songs_66.plot(kind='bar', color='k', alpha=.5)

>>> plt.legend()

>>> fig.savefig('/tmp/ex2.png')

73

Plotting two series that have string indexes as bar plots.

We can also create histograms in pandas. First, we will create a series
with a little more data in it, to make the histogram slightly more
interesting:
>>> data = pd.Series(np.random.randn(500),

... name='500 random')

Creating the histogram is easy, we simply invoke the .hist method of

the series:
>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> data.hist()

>>> fig.savefig('/tmp/ex3.png')

74

A pandas histogram.

This looks very similar to a matplotlib histogram:
>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> ax.hist(data)

>>> fig.savefig('/tmp/ex3-1.png')

75

A histogram created by calling the matplotlib function directly.

If we have installed scipy.stats, we can plot a kernel density

estimation (KDE) plot. This plot is very similar to a histogram, but rather
than using bins to represent areas where numbers fall, it plots a curved
line:
>>> fig = plt.figure()

>>> data.plot(kind='kde') # requires scipy.stats

>>> fig.savefig('/tmp/ex4.png')

76

pandas can generate nice KDE charts if scipy.stats is installed

Because pandas plotting is built on top of the matplotlib library, we can
use the underlying functionality to tweak out plots. Deep diving into
matplotlib is beyond the scope of this book, but below you can see that we
add 2 plots to the figure. On the first we plot a histogram and kernel
density estimation. On the second, we plot a cumulative density plot:
>>> fig = plt.figure()

>>> ax = fig.add_subplot(211)

>>> data.plot(kind='kde', color='b', alpha=.6, ax=ax) # requires

scipy.stats

normed=True is passed through to matplotlib

>>> data.hist(color='g', alpha=.6, ax=ax, normed=True)

>>> ax.set_title("KDE, Histogram & CDF")

>>> ax = fig.add_subplot(212)

>>> data.hist(ax=ax, normed=True, cumulative=True)

>>> fig.savefig('/tmp/ex5.png')

77

An illustration of using the matplotlib to create subplots

Other plot types

In addition, the series provides a few more options of out the box. The
following table summarizes the different plots types. Not that these can be
specified as kind parameters, or as attributes of the .plot attribute.

PLOT

METHODS

RESULT

plot.area Creates an area plot for numeric columns

plot.bar Creates a bar plot for numeric columns

plot.barh Creates a horizonal bar plot for numeric columns

plot.box Creates a box plot for numeric columns

plot.density Creates a kernel density estimation plot for numeric columns (also
plot.kde)

plot.hist Creates a histogram for numeric columns

plot.line Create a line plot. Plots index on x column, and numeric column
values for y

plot.pie Create a pie plot.

78

Another popular plotting option is to use the Seaborn 10 library. This
library bills itself as a "Statistical data visualization" layer on top of
matplotlib. It supports pandas natively, and has more plot types such as
violin plots and swarm plots. It also offers the ability to facet charts (create
subgrids based on features of the data). Given that both matplotlib and
Seaborn offer a gallery on their website, feel free to browse the examples
for inspiration.

Summary

In this chapter we examined plotting a Series. The pandas library

provides some hooks to the matplotlib library. These can be really
convenient. When you need more power, you can drop into raw matplotlib
commands. In the next chapter, we will wrap up our coverage of the
Series, by looking at simple analysis.

9 - matplotlib (http://matplotlib.org/) also refers to itself in lowercase.
10 - http://stanford.edu/~mwaskom/software/seaborn/

79

http://matplotlib.org/
http://stanford.edu/~mwaskom/software/seaborn/

Another Series Example

I RECENTLY BUILT AN ERGONOMIC KEYBOARD 11. TO TAKE FULL ADVANTAGE OF IT,
one might consider creating a custom keyboard layout by analyzing letter
frequency. Since I tend to spend a lot of time programming, instead of just
considering alphanumeric symbols, I should probably take into account
programming symbols as well. Then I can be super efficient on my
keyboard, eliminate RSI, and as an extra bonus, prevent others from using
my computer! To work up to this, we will first consider an analysis of
letter frequency.

80

Both halves of my Ergodox keyboard in action.

Wikipedia has an entry on Letter Frequency 12, which contains a table
and plot for relative frequencies of letters. Below is an attempt to recreate
that table using pandas and the /usr/share/dict/american-english file

found on many Linux distributions (or /usr/share/dict/words-english

81

on Mac). This example will walk through getting the data into a Series

object, tweaking it, and plotting the results.

Standard Python

To contrast between Python and pandas, we will process this data using
both vanilla Python and then pandas. This should help you get a feel for
the differences. We will start with the vanilla Python version.

Using Python's built-in string manipulation tools it is easy to count letter
frequency. The dictionary file we will be analyzing contains data stored in
plain text, one word per line:
$ head /usr/share/dict/american-english

A

A's

AA's

AB's

ABM's

AC's

ACTH's

AI's

AIDS's

AM's

$ tail /usr/share/dict/american-english

élan's

émigré

émigré's

émigrés

épée

épée's

épées

étude

étude's

First, we will load the data and store it in a variable. Note, that we are
using Python 3 here, in Python 2 we would have to call .decode('utf=8')

because the contains UTF-8 encoded accented characters:
>>> filename = '/usr/share/dict/american-english'

>>> data = open(filename).read()

Now, the newlines are removed and the results are flattened into a single
string:
>>> data = ''.join(data.split())

82

With a big string containing the letters of all the words, the built-in class
collections.Counter class makes easy work of counting letter frequency:

>>> from collections import Counter

>>> counts = Counter(data)

>>> counts

Counter({'s': 88663, 'e': 88237, 'i': 66643,

'a': 63151, 'r': 56645, 'n': 56626, 't': 52187,

'o': 48585, 'l': 40271, 'c': 30453, 'd': 27797,

u"'": 26243, '': 25988, 'g': 21992, 'p': 21354,

'm': 20948, 'h': 18568, 'b': 14279, 'y': 12513,

'f': 10220, 'k': 7827, 'v': 7666, 'w': 7077,

'z': 3141, 'x': 2085, 'M': 1560, 'q': 1459,

'j': 1455, 'S': 1450, 'C': 1419, 'A': 1288,

'B': 1247, 'P': 920, 'L': 836, 'T': 819, 'H':

752, 'D': 734, 'G': 720, 'R': 702, 'E': 596,

'K': 582, 'N': 518, 'J': 493, 'F': 455, 'W':

453, 'O': 359, 'I': 343, 'V': 323, '\xe9': 144,

'Z': 140, 'Y': 139, '': 130, 'Q': 65, 'X':

39, '\xe8': 28, '\xf6': 16, '\xfc': 12, '\xe1':

10, '\xf1': 8, '\xf3': 8, '\xe4': 7, '\xea': 6,

'\xe2': 6, '\xe7': 5, '\xe5': 3, '\xfb': 3,

'\xed': 2, '\xf4': 2, '\xc5': 1})

This is quick and dirty, though it has a few issues. Certainly the built-in
Python tools could handle dealing with this data. But this book is
discussing pandas, so let's look at the pandas version.

Enter pandas

First, we will load the words into a Series object. Because the shape of

the data in the file is essentially a single column CSV file, the .from_csv

method should handle it:
>>> words = pd.Series.from_csv(filename)

Traceback (most recent call last):

 ...

IndexError: single positional indexer is out-of-bounds

Whoops! The parsing logic is complaining because there is no index
column. Let's try reading it again with index_col=None. This isn't well

documented, but index_col=None tells pandas to create an index for us (it

will just make an index of integers). We will also specify an encoding:
>>> words = pd.Series.from_csv(filename,

... index_col=None, encoding='utf-8')

This should give us a series with a value for every word:
>>> words

83

0 A

1 A's

2 AA's

3 AB's

4 ABM's

5 AC's

6 ACTH's

7 AI's

8 AIDS's

9 AM's

10 AOL

11 AOL's

12 ASCII's

13 ASL's

14 ATM's

...

99156 éclair's

99157 éclairs

99158 éclat

99159 éclat's

99160 élan

99161 élan's

99162 émigré

99163 émigré's

99164 émigrés

99165 épée

99166 épée's

99167 épées

99168 étude

99169 étude's

99170 études

Length: 99171, dtype: object

At this point, it makes sense to think about what we want in the end. If
we are sticking to the Series datatype, then a series that maps letters (as

index values) to counts will probably allow basic analysis similar to
Wikipedia. The question is how to get there?

One way is to create a new series, counts. This series will have letters

in the index, and counts of those letters as the values. We can create it by
iterating over the words using apply to add the count of every letter to
counts. We will also lowercase the letters to normalize them:

>>> counts = pd.Series([], index=[])

>>> def update_counts(val):

... global counts

... for let in val:

... let = let.lower()

... count = counts.get(let, 0) + val.count(let)

... counts = counts.set_value(let, count)

>>> _ = words.apply(update_counts)

Sort the counts based on the values:

84

>>> counts = counts.sort_values(ascending=False)

This will give us preliminary results:
>>> counts.head()

s 150525

e 148096

i 102818

a 91167

n 80992

dtype: int64

Tweaking data

The most common letter of the english language is normally “e” (which
Wikipedia corroborates). How did “s” get up there? Looking at the original
file shows that it has plural entries. Let's remove those and recount. One
way to do that is to create a mask for all the words containing ' in them.

We will use the negation of that map to find the words without quotes:
>>> mask = ~(words.str.contains("'"))

>>> words = words[mask]

>>> counts = pd.Series([], index=[])

>>> _ = words.apply(update_counts)

>>> counts = counts.sort_values(ascending=False)

>>> counts.head()

e 113431

s 80170

i 78173

a 65492

n 60443

dtype: int64

That looks better. Let’s plot it:
>>> fig = plt.figure()

>>> counts.plot(title="Letter Counts")

>>> fig.savefig('/tmp/letters1.png')

85

Figure sowing the default plot of letter counts. Note that the default plot is a line plot.

The default plot is a line plot. It is probably not the best visualization,
and the ticks on the x axis are not very useful. Let’s try a bar plot:
>>> fig = plt.figure()

>>> counts.plot(kind='bar', title="Letter Counts")

>>> fig.savefig('/tmp/letters2.png')

86

Figure showing a bar plot of letter counts.

That looks better. Wikipedia uses frequency rather than count. We can
easily calculate frequency by applying the divide operation to the series
with the sum as the denominator. Let's sort the index, so it is ordered
alphabetically, and then plot it:
>>> fig = plt.figure()

>>> freq = counts/counts.sum()

>>> freq.sort_index().plot(kind='bar', title="Letter Frequency")

>>> fig.savefig('/tmp/letters3.png')

87

Figure showing a bar plot of letter frequencies.

Custom symbol frequency

Here is perhaps an easier way to get character counts in a series. To
determine frequency of symbols in a given file, we will treat the whole file
as a list of characters (utf-8 encoded) including newlines. This turns out to
be easier than loading the dictionary file.

First we will try out a get_freq function on a string buffer with dummy

data to validate the functionality:
>>> def get_freq(fin):

... ser = pd.Series(list(fin.read()))

... ser = ser.value_counts()

... return (ser * 100.) / ser.sum()

>>> fin = StringIO('abcabczzzzz\n\n')

>>> ser = get_freq(fin)

>>> ser

z 38.461538

\n 15.384615

b 15.384615

c 15.384615

a 15.384615

dtype: float64

88

I'll load it on the source of this book (which contains both the code and
the text) and see what happens:
>>> ser = get_freq(open('template/pandas.rst'))

>>> ser

 23.553399

e 6.331422

t 4.672842

a 4.396412

s 3.753370

. 3.683772

i 3.521051

\n 3.472038

o 3.380875

n 3.206391

r 3.025045

l 2.351615

d 2.277116

= 1.938931

> 1.640935

...

ç 0.00196

Å 0.00196

è 0.00196

ñ 0.00196

ä 0.00196

? 0.00196

ê 0.00196

å 0.00196

ó 0.00196

^ 0.00196

â 0.00196

á 0.00196

ô 0.00196

ö 0.00196

ü 0.00098

Length: 114, dtype: float64

A brief look at this indicates that the text of this book is abnormal
relative to normal English. Also, were I to customize my keyboard based
on this text, the non-alphabetic characters that I hit the most—space,
period, return, equals, and greater than—should be pretty close to the
home row. It seems that I need a larger corpus to sample from, and that my
current keyboard layout is not optimal as the most popular characters do
not have keys on the home row.

Again, we can visualize this quickly using the .plot method:

>>> fig = plt.figure()

>>> ser.plot(kind='bar', title="Custom Letter Frequency")

>>> fig.savefig('/tmp/letters4.png')

89

Figure showing letter frequency of the text of this book

NOTE

I am currently typing with the Norman layout 13 on my ergonomic
keyboard.

Summary

This chapter concludes our Series coverage. We examined loading data

into a Series, processing it, and plotting it. We also saw how we could do

similar processing with only the Python Standard Library. While that code
is straightforward, once we start tweaking the data and plotting it, the
pandas version becomes more concise, and will be faster.

11 - http://www.ergodox.org/
12 - http://en.wikipedia.org/wiki/Letter_frequency
13 - https://normanlayout.info/

90

http://www.ergodox.org/
http://en.wikipedia.org/wiki/Letter_frequency
https://normanlayout.info/

DataFrames

THE TWO-DIMENSIONAL COUNTERPART TO THE ONE-DIMENSIONAL SERIES IS THE

DataFrame. To better understand this data structure, it helps to understand

how it is constructed.
If you think of a data frame as row-oriented, the interface will feel

wrong. Many tabular data structures are row-oriented. Perhaps this is due
to spreadsheets and CSV files that are dealt with on a row by row basis.
Perhaps it is due to the many OLTP 14 databases that are row oriented out
of the box. A DataFrame, is often used for analytical purposes and is better

understood when thought of as column oriented, where each column is a
Series.

NOTE

In practice many highly optimized analytical databases (those used
for OLAP cubes) are also column oriented. Laying out the data in a
columnar manner can improve performance and require less
resources. Columns of a single type can be compressed easily.
Performing analysis on a column requires loading only that columns
whereas a row oriented database would require loading the complete
database to access an entire column.

Below is a simple attempt to create a tabular Python data structure that
is column oriented. It has an 0-based integer index, but that is not required,
the index could be string based. Each column is similar to the Series-like
structure developed previously:
>>> df = {

91

... 'index':[0,1,2],

... 'cols': [

... { 'name':'growth',

... 'data':[.5, .7, 1.2] },

... { 'name':'Name',

... 'data':['Paul', 'George', 'Ringo'] },

...]

... }

Rows are accessed via the index, and columns are accessible from the
column name. Below are simple functions for accessing rows and
columns:
>>> def get_row(df, idx):

... results = []

... value_idx = df['index'].index(idx)

... for col in df['cols']:

... results.append(col['data'][value_idx])

... return results

>>> get_row(df, 1)

[0.7, 'George']

>>> def get_col(df, name):

... for col in df['cols']:

... if col['name'] == name:

... return col['data']

>>> get_col(df, 'Name')

['Paul', 'George', 'Ringo']

DataFrames

Using the pandas DataFrame object, the previous data structure could be

created like this:
>>> import pandas as pd

>>> df = pd.DataFrame({

... 'growth':[.5, .7, 1.2],

... 'Name':['Paul', 'George', 'Ringo'] })

>>> df

 Name growth

0 Paul 0.5

1 George 0.7

2 Ringo 1.2

92

Figure showing column oriented nature of Data Frame. (Note that a column can be
pulled off as a Series)

To access a row by location, index off of the .iloc attribute:

>>> df.iloc[2]

Name Ringo

growth 1.2

Name: 2, dtype: object

Columns are accessible via indexing the column name off of the object:
>>> df['Name']

0 Paul

1 George

2 Ringo

Name: Name, dtype: object

Note the type of column is a pandas Series instance. Any operation that

can be done to a series can be applied to a column:
>>> type(df['Name'])

<class 'pandas.core.series.Series'>

>>> df['Name'].str.lower()

0 paul

1 george

2 ringo

Name: Name, dtype: object

NOTE

The DataFrame overrides __getattr__ to allow access to columns as

attributes. This tends to work ok, but will fail if the column name

93

conflicts with an existing method or attribute, or has an unexpected
character such as a space:

>>> df.Name

0 Paul

1 George

2 Ringo

Name: Name, dtype: object

The above should provide hints as to why the Series was covered in

such detail. When column operations are involved, a series method is often
involved. In addition, the index behavior across both data structures is the
same.

Construction

Data frames can be created from many types of input:

columns (dicts of lists)
rows (list of dicts)
CSV file (pd.read_csv)

from NumPy ndarray
And more, SQL, HDF5, etc

The previous creation of df illustrated making a data frame from

columns. Below is an example of creating a data frame from rows:
>>> pd.DataFrame([

... {'growth':.5, 'Name':'Paul'},

... {'growth':.7, 'Name':'George'},

... {'growth':1.2, 'Name':'Ringo'}])

 Name growth

0 Paul 0.5

1 George 0.7

2 Ringo 1.2

Similarly, here is an example of loading this data from a CSV file:
>>> csv_file = StringIO("""growth,Name

... .5,Paul

... .7,George

... 1.2,Ringo""")

>>> pd.read_csv(csv_file)

 growth Name

94

0 0.5 Paul

1 0.7 George

2 1.2 Ringo

A data frame can be instantiated from a NumPy array as well. The
column names will need to be specified:
>>> pd.DataFrame(np.random.randn(10,3), columns=['a', 'b', 'c'])

 a b c

0 0.926178 1.909417 -1.398568

1 0.562969 -0.650643 -0.487125

2 -0.592394 -0.863991 0.048522

3 -0.830950 0.270457 -0.050238

4 -0.238948 -0.907564 -0.576771

5 0.755391 0.500917 -0.977555

6 0.099332 0.751387 -1.669405

7 0.543360 -0.662624 0.570599

8 -0.763259 -1.804882 -1.627542

9 0.048085 0.259723 -0.904317

Data Frame Axis

Unlike a series, which has one axis, there are two axes for a data frame.
They are commonly referred to as axis 0 and 1, or the row/index axis and
the columns axis respectively:
>>> df.axes

[RangeIndex(start=0, stop=3, step=1),

Index(['Name', 'growth'], dtype='object')]

As many operations take an axis parameter, it is important to remember

that 0 is the index and 1 is the columns:
>>> df.axes[0]

RangeIndex(start=0, stop=3, step=1)

>>> df.axes[1]

Index(['Name', 'growth'], dtype='object')

TIP

In order to remember which axis is 0 and which is 1 it can be handy
to think back to a Series. It also has axis 0 along the index:

>>> df = pd.DataFrame({'Score1': [None, None],

... 'Score2': [85, 90]})

>>> df

 Score1 Score2

0 None 85

1 None 90

95

If we want to sum up each of the columns, the we sum along the
index axis (axis=0), or along the row axis:

>>> df.apply(np.sum, axis=0)

Score1 NaN

Score2 175.0

dtype: float64

To sum along every row, we sum down the columns axis (axis=1):

>>> df.apply(np.sum, axis=1)

0 85

1 90

dtype: int64

Figure showing relation between axis 0 and axis 1. Note that when an operation is
applied along axis 0, it is applied down the column. Likewise, operations along axis 1

operate across the values in the row.

Summary

In this section we were introduced to a Python data structure that is similar
to how a pandas data frame is implemented. It illustrated the index and the
columnar nature of the data frame. Then we looked at the main
components of the data frame, and how columns are really just series

96

objects. We saw various ways to construct data frames. Finally, we looked
at the two axes of the data frame.

In future chapters we will dig in more and see the data frame in action.

14 - OLTP (On-line Transaction Processing) is a characterization of
databases that are meant for transactional data. Bank accounts are an
example where data integrity is imperative, yet multiple users might need
concurrent access. In contrast with OLAP (On-line Analytical Processing),
which is optimized for complex querying and aggregation. Typically,
reporting systems use these types of databases, which might store data in
denormalized form in order to speed up access.

97

Data Frame Example

BEFORE DISCUSSING DATA FRAMES IN DETAIL, LET’S COVER WORKING WITH A

small data set. Below is some data from a portion of trail data of the
Wasatch 100 trail race 15:

LOCATION MILES ELEVATION CUMUL %
CUMUL

GAIN
Big Mountain Pass Aid
Station

39.07 7432 11579 43.8%

Mules Ear Meadow 40.75 7478 12008 45.4%

Bald Mountain 42.46 7869 12593 47.6%

Pence Point 43.99 7521 12813 48.4%

Alexander Ridge Aid Station 46.9 6160 13169 49.8%

Alexander Springs 47.97 5956 13319 50.3%

Rogers Trail junction 49.52 6698 13967 52.8%

Rogers Saddle 49.77 6790 14073 53.2%

Railroad Bed 50.15 6520

Lambs Canyon Underpass
Aid Station

52.48 6111 14329 54.2%

Lambs Trail 54.14 6628 14805 56.0%

We’ll load this data into a data frame and use it data to show basic
CRUD operations and plotting.

Reading in CSV files is straightforward in pandas. Here we paste the
contents into a StringIO buffer to emulate a CSV file:

>>> data = StringIO('''LOCATION,MILES,ELEVATION,CUMUL,% CUMUL GAIN

... Big Mountain Pass Aid Station,39.07,7432,11579,43.8%

... Mules Ear Meadow,40.75,7478,12008,45.4%

... Bald Mountain,42.46,7869,12593,47.6%

98

... Pence Point,43.99,7521,12813,48.4%

... Alexander Ridge Aid Station,46.9,6160,13169,49.8%

... Alexander Springs,47.97,5956,13319,50.3%

... Rogers Trail junction,49.52,6698,13967,52.8%

... Rogers Saddle,49.77,6790,14073,53.2%

... Railroad Bed,50.15,6520,,

... Lambs Canyon Underpass Aid Station,52.48,6111,14329,54.2%''')

>>> df = pd.read_csv(data)

Now that the data is loaded, it can easily be examined:
>>> df

 LOCATION MILES ELEVATION CUMUL % CUMUL

GAIN

0 Big Mountain Pass Aid Station 39.07 7432 11579.0

43.8%

1 Mules Ear Meadow 40.75 7478 12008.0

45.4%

2 Bald Mountain 42.46 7869 12593.0

47.6%

3 Pence Point 43.99 7521 12813.0

48.4%

4 Alexander Ridge Aid Station 46.90 6160 13169.0

49.8%

5 Alexander Springs 47.97 5956 13319.0

50.3%

6 Rogers Trail junction 49.52 6698 13967.0

52.8%

7 Rogers Saddle 49.77 6790 14073.0

53.2%

8 Railroad Bed 50.15 6520 NaN

NaN

9 Lambs Canyon Underpass Aid Station 52.48 6111 14329.0

54.2%

This book highlights a problem that a user may run across on a terminal.
The pandas library tries to be smart about how it shows data on a terminal.
In general it does a good job. Line wrapping can be annoying though if
your terminal is not wide enough. One option is to invoke the .to_string

method. To limit the width to a specific number of columns, the
.to_string method accepts a line_width parameter:

>>> print(df.to_string(line_width=60))

 LOCATION MILES ELEVATION \

0 Big Mountain Pass Aid Station 39.07 7432

1 Mules Ear Meadow 40.75 7478

2 Bald Mountain 42.46 7869

3 Pence Point 43.99 7521

4 Alexander Ridge Aid Station 46.90 6160

5 Alexander Springs 47.97 5956

6 Rogers Trail junction 49.52 6698

7 Rogers Saddle 49.77 6790

8 Railroad Bed 50.15 6520

9 Lambs Canyon Underpass Aid Station 52.48 6111

99

 CUMUL % CUMUL GAIN

0 11579.0 43.8%

1 12008.0 45.4%

2 12593.0 47.6%

3 12813.0 48.4%

4 13169.0 49.8%

5 13319.0 50.3%

6 13967.0 52.8%

7 14073.0 53.2%

8 NaN NaN

9 14329.0 54.2%

Another option for viewing data is to transpose it. This takes the
columns and places them down the left side. Each row of the original data
is now a column. In book form, neither of these options is nice with larger
tables. Using a tool like Jupyter will allow you to see an HTML
representation of the data:
>>> print(df.T.to_string(line_width=60))

 0 \

LOCATION Big Mountain Pass Aid Station

MILES 39.07

ELEVATION 7432

CUMUL 11579

% CUMUL GAIN 43.8%

 1 2 \

LOCATION Mules Ear Meadow Bald Mountain

MILES 40.75 42.46

ELEVATION 7478 7869

CUMUL 12008 12593

% CUMUL GAIN 45.4% 47.6%

 3 4 \

LOCATION Pence Point Alexander Ridge Aid Station

MILES 43.99 46.9

ELEVATION 7521 6160

CUMUL 12813 13169

% CUMUL GAIN 48.4% 49.8%

 5 6 \

LOCATION Alexander Springs Rogers Trail junction

MILES 47.97 49.52

ELEVATION 5956 6698

CUMUL 13319 13967

% CUMUL GAIN 50.3% 52.8%

 7 8 \

LOCATION Rogers Saddle Railroad Bed

MILES 49.77 50.15

ELEVATION 6790 6520

CUMUL 14073 NaN

% CUMUL GAIN 53.2% NaN

 9

LOCATION Lambs Canyon Underpass Aid Station

MILES 52.48

ELEVATION 6111

100

CUMUL 14329

% CUMUL GAIN 54.2%

Looking at the data

In addition to just looking at the string representation of a data frame, the
.describe method provides summary statistics of the numeric data. It

returns the count of items, the average value, the standard deviation, and
the range and quantile data for every column that is a float or and integer:
>>> df.describe()

 MILES ELEVATION CUMUL

count 10.000000 10.000000 9.000000

mean 46.306000 6853.500000 13094.444444

std 4.493574 681.391428 942.511686

min 39.070000 5956.000000 11579.000000

25% 42.842500 6250.000000 12593.000000

50% 47.435000 6744.000000 13169.000000

75% 49.707500 7466.500000 13967.000000

max 52.480000 7869.000000 14329.000000

Because every column can be treated as a series, the methods for
analyzing the series can be used on the columns. The LOCATION column is

string based, so we will use the .value_counts method to examine if there

are repeats:
>>> df['LOCATION'].value_counts()

Railroad Bed 1

Rogers Saddle 1

Pence Point 1

Alexander Springs 1

Bald Mountain 1

Lambs Canyon Underpass Aid Station 1

Mules Ear Meadow 1

Big Mountain Pass Aid Station 1

Alexander Ridge Aid Station 1

Rogers Trail junction 1

Name: LOCATION, dtype: int64

In this case, because the location names are unique, the .value_counts

method does not provide much new information.
Another option for looking at the data is the .corr method. This method

provides the Pearson Correlation Coefficient statistic for all the numeric
columns in a table. The result is a number (between -1 and 1) that
describes the linear relationship between the variables:
>>> df.corr()

 MILES ELEVATION CUMUL

MILES 1.000000 -0.783780 0.986613

101

ELEVATION -0.783780 1.000000 -0.674333

CUMUL 0.986613 -0.674333 1.000000

This statistic shows that any column will have a perfect correlation (a
value of 1) with itself, but also that cumulative elevation is pretty strongly
correlated with distance (as both grow over the length of the course at a
pretty constant rate, this makes intuitive sense). This is a section of the
course where the starting point is at a higher elevation than the final
elevation. As such, there is a negative correlation between the miles and
elevation for this portion.

Plotting With Data Frames

Data frames also have built-in plotting ability. The default behavior is to
use the index as the x values, and plot every numerical column (any string
column is ignored):
>>> fig = plt.figure()

>>> df.plot()

>>> fig.savefig('/tmp/df-ex1.png')

Default .plot of a data frame containing both numerical and string data. Note that
when we try to save this as a png file it is empty if we forget the call to add a matplotlib

102

axes to the figure (one way is to call fig.add_subplot(111)). Within Jupyter notebook,

we will see a real plot, this is only an issue when using pandas to plot and then saving
the plot.

The default saved plot is actually empty. (Note that if you are using
Jupyter, this is not the case and a plot will appear if you used the
%matplotlib inline directive). To save a plot of a data frame that has the

image in it, the ax parameter needs to be passed a matplotlib Axis. Calling

fig.subplot(111) will give us one:

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> df.plot(ax=ax)

>>> fig.savefig('/tmp/df-ex2.png')

Default .plot of a data frame passing in the ax parameter so it saves correctly.

These plots are not perfect, yet they start to show the power that pandas
provides for visualizing data quickly.

The pandas library has some built-in support for the matplotlib library.
Though there are a few quirks, we can easily produce charts and
visualizations.

103

This plot has the problem that the scale of the miles plot is blown out
due to the elevation numbers. pandas allows labelling the other y-axis (the
one on the right side), but to do so requires two calls to .plot. For the first

.plot call, pull out only the elevation columns using an index operation

with a list of (numerical) columns to pull out. The second call will be
made against the series with the mileage data and a secondary_y

parameter set to True. It also requires an explicit call to plt.legend to

place a legend for the mileage:
>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> df[['CUMUL', 'ELEVATION']].plot(ax=ax)

>>> df['MILES'].plot(secondary_y=True)

>>> plt.legend(loc='best')

>>> ax.set_ylabel('Elevation (feet)')

>>> ax.right_ax.set_ylabel('Distance (miles)')

>>> fig.savefig('/tmp/df-ex3.png')

Plot using secondary_y parameter to use different scales on the left and right axis for
elevation and distance.

Another way to convey information is to plot with labels along the x
axis instead of using a numerical index (which does not mean much to

104

viewers of the graph). By default, pandas plots the index along the x axis.
To graph against the name of the station, we need to pass in an explicit
value for x, the ELEVATION column. The labels will need to tilted a bit so

that they do not overlap. This rotation is done with fig.autofmt_xdate().

The bounding box also needs to be expanded a bit so the labels do not get
clipped off at the edges. The bbox_inches='tight' parameter to

fig.savefig will help with this:

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> df.plot(x='LOCATION', y=['ELEVATION', 'CUMUL'], ax=ax)

>>> df.plot(x='LOCATION', y='MILES', secondary_y=True, ax=ax)

>>> ax.set_ylabel('Elevation (feet)')

>>> ax.right_ax.set_ylabel('Distance (miles)')

>>> fig.autofmt_xdate()

>>> fig.savefig('/tmp/df-ex4.png', bbox_inches='tight')

Plot using LOCATION as the x axis rather than the default (the index values).

Another option is to plot the elevation against the miles. pandas make it
easy to experiment:
>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> df.plot(x='MILES', y=['ELEVATION', 'CUMUL'], ax=ax)

>>> plt.legend(loc='best')

>>> ax.set_ylabel('Elevation (feet)')

105

>>> fig.savefig('/tmp/df-ex5.png')

Plot using MILES as the x axis rather than the default (the index values).

Adding rows

The race data is a portion from the middle section of the race. If we wanted
to combine the data with other portions of the trail, it requires using the
.concat function or the .append method.

The .concat function combines two data frames. To add the next mile

marker, we need to create a new data frame and use the function to join the
two together:
>>> df2 = pd.DataFrame([('Lambs Trail',54.14,6628,14805,

... '56.0%')], columns=['LOCATION','MILES','ELEVATION',

... 'CUMUL','% CUMUL GAIN'])

>>> print(pd.concat([df, df2]).to_string(line_width=60))

 LOCATION MILES ELEVATION \

0 Big Mountain Pass Aid Station 39.07 7432

1 Mules Ear Meadow 40.75 7478

2 Bald Mountain 42.46 7869

3 Pence Point 43.99 7521

4 Alexander Ridge Aid Station 46.90 6160

5 Alexander Springs 47.97 5956

6 Rogers Trail junction 49.52 6698

7 Rogers Saddle 49.77 6790

8 Railroad Bed 50.15 6520

9 Lambs Canyon Underpass Aid Station 52.48 6111

106

0 Lambs Trail 54.14 6628

 CUMUL % CUMUL GAIN

0 11579.0 43.8%

1 12008.0 45.4%

2 12593.0 47.6%

3 12813.0 48.4%

4 13169.0 49.8%

5 13319.0 50.3%

6 13967.0 52.8%

7 14073.0 53.2%

8 NaN NaN

9 14329.0 54.2%

0 14805.0 56.0%

There are a couple of things to note from the result of this operation:

The original data frames were not modified. This is usually (but not
always) the case with pandas data structures.
The index of the last entry is 0. Ideally it would be 10.

To resolve the last issue, pass the ignore_index=True parameter to

concat. To solve the first issue, simply overwrite df with the new data

frame:
>>> df = pd.concat([df, df2], ignore_index=True)

>>> df.index

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype='int64')

Adding columns

To add a column, simply assign a series to a new column name:
>>> df['bogus'] = pd.Series(range(11))

Below, we add a column named STATION, based on whether the location

has an aid station. It will compute the new boolean value for the column
based on the occurrence of 'Station' in the LOCATION column:

>>> def aid_station(val):

... return 'Station' in val

>>> df['STATION'] = df['LOCATION'].apply(aid_station)

>>> print(df.to_string(line_width=60))

 LOCATION MILES ELEVATION \

0 Big Mountain Pass Aid Station 39.07 7432

1 Mules Ear Meadow 40.75 7478

2 Bald Mountain 42.46 7869

3 Pence Point 43.99 7521

4 Alexander Ridge Aid Station 46.90 6160

5 Alexander Springs 47.97 5956

107

6 Rogers Trail junction 49.52 6698

7 Rogers Saddle 49.77 6790

8 Railroad Bed 50.15 6520

9 Lambs Canyon Underpass Aid Station 52.48 6111

10 Lambs Trail 54.14 6628

 CUMUL % CUMUL GAIN bogus STATION

0 11579.0 43.8% 0 True

1 12008.0 45.4% 1 False

2 12593.0 47.6% 2 False

3 12813.0 48.4% 3 False

4 13169.0 49.8% 4 True

5 13319.0 50.3% 5 False

6 13967.0 52.8% 6 False

7 14073.0 53.2% 7 False

8 NaN NaN 8 False

9 14329.0 54.2% 9 True

10 14805.0 56.0% 10 False

Deleting Rows

The pandas data frame has a .drop method that takes a sequence of index

values. It returns a new data frame without those index entries. To remove
the items found in index 5 and 9 use the following:

>>> df.drop([5, 9])

 LOCATION MILES ELEVATION CUMUL % CUMUL GAIN

STATION

0 Big Mountain Pass Aid Station 39.07 7432 11579 43.8%

True

1 Mules Ear Meadow 40.75 7478 12008 45.4%

False

2 Bald Mountain 42.46 7869 12593 47.6%

False

3 Pence Point 43.99 7521 12813 48.4%

False

4 Alexander Ridge Aid Station 46.90 6160 13169 49.8%

True

6 Rogers Trail junction 49.52 6698 13967 52.8%

False

7 Rogers Saddle 49.77 6790 14073 53.2%

False

8 Railroad Bed 50.15 6520 NaN NaN

False

10 Lambs Trail 54.14 6628 14805 56.0%

False

NOTE

The .drop method does not work in place. It returns a new data

frame.

108

This method accepts index labels, which can be pulled out by slicing the
.index attribute as well. This is useful when using text indexes or to delete

large slices of rows. The previous example can be written as:
>>> df.drop(df.index[5:10:4])

 LOCATION MILES ELEVATION CUMUL % CUMUL GAIN

STATION

0 Big Mountain Pass Aid Station 39.07 7432 11579 43.8%

True

1 Mules Ear Meadow 40.75 7478 12008 45.4%

False

2 Bald Mountain 42.46 7869 12593 47.6%

False

3 Pence Point 43.99 7521 12813 48.4%

False

4 Alexander Ridge Aid Station 46.90 6160 13169 49.8%

True

6 Rogers Trail junction 49.52 6698 13967 52.8%

False

7 Rogers Saddle 49.77 6790 14073 53.2%

False

8 Railroad Bed 50.15 6520 NaN NaN

False

10 Lambs Trail 54.14 6628 14805 56.0%

False

Deleting Columns

To delete columns, use the .pop method, the .drop method with axis=1,

or the del statement. Since the bogus column provides no additional value

over the index, we will drop it:
>>> bogus = df.pop('bogus')

The bogus object is now a series holding the column removed from the

data frame:
>>> bogus

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

Name: bogus, dtype: int64

Examining the columns shows that bogus no longer exists:

>>> df.columns

109

Index(['LOCATION', 'MILES', 'ELEVATION', 'CUMUL',

'% CUMUL GAIN', 'STATION'], dtype='object')

Because data frames emulate some of the dictionary interface, the del

statement can also be used to remove columns. First, we will add the
column back before deleting it again:
>>> df['bogus'] = bogus

>>> del df['bogus']

>>> df.columns

Index(['LOCATION', 'MILES', 'ELEVATION', 'CUMUL',

'% CUMUL GAIN', 'STATION'], dtype='object')

NOTE

These operations operate on the data frame in place.

The .drop method accepts an axis parameter and does not work in

place—it returns a new data frame:
>>> df.drop(['ELEVATION', 'CUMUL', '% CUMUL GAIN', 'STATION'],

... axis=1)

 LOCATION MILES

0 Big Mountain Pass Aid Station 39.07

1 Mules Ear Meadow 40.75

2 Bald Mountain 42.46

3 Pence Point 43.99

4 Alexander Ridge Aid Station 46.90

5 Alexander Springs 47.97

6 Rogers Trail junction 49.52

7 Rogers Saddle 49.77

8 Railroad Bed 50.15

9 Lambs Canyon Underpass Aid Station 52.48

10 Lambs Trail 54.14

NOTE

It will be more consistent to use .drop with axis=1 than del or .pop.

You will have to get used to the meaning of axis=1, which you can

interpret as “apply this to the columns”.

Working with this data should give you a feeling for the kinds of
operations that are possible on DataFrame objects. This section has only

110

covered a small portion of them.

Summary

In this chapter, we saw a quick overview of the data frame. We saw how to
load data from a CSV file. We also looked at CRUD operations and
plotting data.

In the next chapter we will examine the various members of the
DataFrame object.

15 - Data existed at one point at
http://www.wasatch100.com/index.php?
option=com_content&view=article&id=132&Itemid=10

111

http://www.wasatch100.com/index.php?option=com_content&view=article&id=132&Itemid=10

Data Frame Methods

PART OF THE POWER OF PANDAS IS DUE TO THE RICH METHODS THAT ARE BUILT-IN

to the Series and DataFrame objects. This chapter will look into many of

the attributes of the DataFrame.

The data for this section is sample retail sales data:
>>> data = StringIO('''UPC,Units,Sales,Date

... 1234,5,20.2,1-1-2014

... 1234,2,8.,1-2-2014

... 1234,3,13.,1-3-2014

... 789,1,2.,1-1-2014

... 789,2,3.8,1-2-2014

... 789,,,1-3-2014

... 789,1,1.8,1-5-2014''')

>>> sales = pd.read_csv(data)

>>> sales

 UPC Units Sales Date

0 1234 5.0 20.2 1-1-2014

1 1234 2.0 8.0 1-2-2014

2 1234 3.0 13.0 1-3-2014

3 789 1.0 2.0 1-1-2014

4 789 2.0 3.8 1-2-2014

5 789 NaN NaN 1-3-2014

6 789 1.0 1.8 1-5-2014

Data Frame Attributes

Let's dig in a little more. We can examine the axes of a data frame by
looking at the .axes attribute:

>>> sales.axes

[RangeIndex(start=0, stop=7, step=1),

Index(['UPC', 'Units', 'Sales', 'Date'], dtype='object')]

The .axes is a list that contains the index and columns:

>>> sales.index

RangeIndex(start=0, stop=7, step=1)

>>> sales.columns

Index(['UPC', 'Units', 'Sales', 'Date'],

dtype='object')

112

The number of row and columns is also available via the .shape

attribute:
>>> sales.shape

(7, 4)

For basic information about the object, use the .info method. Notice

that the dtype for UPC is int64. Though UPC appears number-like here, it

is possible to have dashes or other non-numeric values. It might be
preferable to have it stored as a string. Also, the dtype for Date is object,

it would be nice if it was a date instead. This may prove problematic when
doing actual analysis. In later sections we will show how to change these
types using the .astype method and the to_datetime function.

The .info method summarizes the types and columns of a data frame. It

also provides insight into how much memory is being consumed. When
you have larger data sets, this information is useful to see where memory
is going. Converting string types to numeric or date types can go far to
help lower the memory usage:
>>> sales.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 7 entries, 0 to 6

Data columns (total 4 columns):

UPC 7 non-null int64

Units 6 non-null float64

Sales 6 non-null float64

Date 7 non-null object

dtypes: float64(2), int64(1), object(1)

memory usage: 280.0+ bytes

Iteration

Data frames include a variety of methods to iterate over the values. By
default, iteration occurs over the column names:
>>> for column in sales:

... print(column)

UPC

Units

Sales

Date

The .keys method is a more explicit synonym for the default iteration

behavior:

113

>>> for column in sales.keys():

... print(column)

UPC

Units

Sales

Date

NOTE

Unlike the Series object which tests for membership against the

index, the DataFrame tests for membership against the columns. The

iteration behavior (__iter__) and membership behavior

(__contains__) is the same for the DataFrame:

>>> 'Units' in sales

True

>>> 0 in sales

False

The .iteritems method returns pairs of column names and the

individual column (as a Series):

>>> for col, ser in sales.iteritems():

... print(col, ser)

UPC 0 1234

1 1234

2 1234

3 789

4 789

5 789

6 789

Name: UPC, dtype: int64

Units 0 5.0

1 2.0

2 3.0

3 1.0

4 2.0

5 NaN

6 1.0

Name: Units, dtype: float64

Sales 0 20.2

1 8.0

2 13.0

3 2.0

4 3.8

5 NaN

6 1.8

Name: Sales, dtype: float64

Date 0 1-1-2014

1 1-2-2014

2 1-3-2014

114

3 1-1-2014

4 1-2-2014

5 1-3-2014

6 1-5-2014

Name: Date, dtype: object

The .iterrows method returns a tuple for every row. The tuple has two

items. The first is the index value. The second is the row converted into a
Series object. This might be a little tricky in practice because a row's

values might not be homogenous, whereas that is usually the case in a
column of data. Notice that the dtype for the row series is object because

the row has strings and numeric values in it:
>>> for row in sales.iterrows():

... print(row)

... break # limit data

(0, UPC 1234

Units 5

Sales 20.2

Date 1-1-2014

Name: 0, dtype: object)

The .itertuples method returns a namedtuple containing the index and

row values:
>>> for row in sales.itertuples():

... print(row)

... break # limit data

Pandas(Index=0, UPC=1234, Units=5.0, Sales=20.199999999999999,

Date='1-1-2014')

NOTE

If you aren't familiar with NamedTuples in Python, check them out

from the collections module. They give you all the benefits of a

tuple: immutable, low memory requirements, and index access. In
addition, the namedtuple allows you to access values by attribute:

>>> import collections

>>> Sales = collections.namedtuple('Sales',

... 'upc,units,sales')

>>> s = Sales(1234, 5., 20.2)

>>> s[0] # index access

1234

>>> s.upc # attribute access

1234

115

This helps make your code more readable, as 0 is a magic number

in the above code. It is not clear to readers of the code what 0 is. But

.upc is very explicit and makes for readable code.

We can ask a data frame how long it is with the len function. This is not

the number of columns (even though iteration is over the columns), but the
number of rows:
>>> len(sales) # len of rows/index

7

NOTE

Operations performed during iteration are not vectorized in pandas
and have overhead. If you find yourself performing operations in an
iteration loop, there might be a vectorized way to do the same thing.

For example, you would not want to iterate over the row data to
sum the column values. The .sum method is optimized to perform this

operation.

Arithmetic

Data frames support broadcasting of arithmetic operations. If we add a
number to a data frame, it is possible to increment every cell by that
amount. But there is a caveat, to increment every numeric value by ten,
simply adding ten to the data frame will fail:
>>> sales + 10

Traceback (most recent call last):

 ...

TypeError: Could not operate 10 with block values

Can't convert 'int' object to str implicitly

We need to only broadcast this operation to the numeric columns. Since
the units and sales columns are both numeric, we can slice them out and
broadcast on them:
>>> sales[['Sales', 'Units']] + 10

116

 Sales Units

0 30.2 15.0

1 18.0 12.0

2 23.0 13.0

3 12.0 11.0

4 13.8 12.0

5 NaN NaN

6 11.8 11.0

In practice, unless the data columns are homogenous, such operations
will be performed on a subset of the columns. To adjust only the units
column, simply broadcast to that column:
>>> sales.Units + 2

0 7.0

1 4.0

2 5.0

3 3.0

4 4.0

5 NaN

6 3.0

Name: Units, dtype: float64

Matrix Operations

The data frame can be treated as a matrix. There is support for transposing
a matrix:
>>> sales.transpose() # sales.T is a shortcut

 0 1 2 3 4 5 6

UPC 1234 1234 1234 789 789 789 789

Units 5 2 3 1 2 NaN 1

Sales 20.2 8 13 2 3.8 NaN 1.8

Date 1-1-2014 1-2-2014 1-3-2014 1-1-2014 1-2-2014 1-3-2014 1-5-2014

TIP

The .T property of a data frame is a nice wrapper to the .transpose

method. It comes in handy when examining a data frame in an
iPython Notebook. It turns out that viewing the column headers along
the left-hand side often makes the data more compact and easier to
read.

The dot product can be called on a data frame if the contents are
numeric:
>>> sales.dot(sales.T)

Traceback (most recent call last):

117

 ...

TypeError: can't multiply sequence by non-int of type 'str'

Serialization

Data frames can serialize to many forms. The most important functionality
is probably converting to and from a CSV file, as this format is the lingua
franca of data. We already saw that the pd.read_csv function will create a

DataFrame. Writing to CSV is easy, we simply use the .to_csv method:

>>> fout = StringIO()

>>> sales.to_csv(fout, index_label='index')

>>> print(fout.getvalue())

index,UPC,Units,Sales,Date

0,1234,5.0,20.2,1-1-2014

1,1234,2.0,8.0,1-2-2014

2,1234,3.0,13.0,1-3-2014

3,789,1.0,2.0,1-1-2014

4,789,2.0,3.8,1-2-2014

5,789,,,1-3-2014

6,789,1.0,1.8,1-5-2014

The .to_dict method gives a mapping of column name to a mapping of

index to value. If you needed to store the data in a JSON compliant format,
this is one possibility:
>>> sales.to_dict()

{'Units': {0: 5.0, 1: 2.0, 2: 3.0, 3: 1.0, 4: 2.0,

 5: nan, 6: 1.0},

 'Date': {0: '1-1-2014', 1: '1-2-2014', 2: '1-3-2014',

 3: '1-1-2014', 4: '1-2-2014', 5: '1-3-2014',

 6: '1-5-2014'},

 'UPC': {0: 1234, 1: 1234, 2: 1234, 3: 789, 4: 789,

 5: 789, 6: 789},

 'Sales': {0: 20.2, 1: 8.0, 2: 13.0, 3: 2.0, 4: 3.8,

 5: nan, 6: 1.8}}

An optional parameter orient can create a mapping of column name to

a list of values:
>>> sales.to_dict(orient='list')

{'Units': [5.0, 2.0, 3.0, 1.0, 2.0, nan, 1.0],

'Date': ['1-1-2014', '1-2-2014', '1-3-2014',

'1-1-2014', '1-2-2014', '1-3-2014', '1-5-2014'],

'UPC': [1234, 1234, 1234, 789, 789, 789, 789],

'Sales': [20.2, 8.0, 13.0, 2.0, 3.8, nan, 1.8]}

Data frames can also be created from the serialized dict if needed:
>>> pd.DataFrame.from_dict(sales.to_dict())

 Date Sales UPC Units

0 1-1-2014 20.2 1234 5.0

118

1 1-2-2014 8.0 1234 2.0

2 1-3-2014 13.0 1234 3.0

3 1-1-2014 2.0 789 1.0

4 1-2-2014 3.8 789 2.0

5 1-3-2014 NaN 789 NaN

6 1-5-2014 1.8 789 1.0

In addition, data frames can read and write Excel files. Use the
.to_excel method to dump the data out:

>>> writer = pd.ExcelWriter('/tmp/output.xlsx')

>>> sales.to_excel(writer, 'sheet1')

>>> writer.save()

We can also read Excel data:
>>> pd.read_excel('/tmp/output.xlsx')

 UPC Units Sales Date

0 1234 5.0 20.2 1-1-2014

1 1234 2.0 8.0 1-2-2014

2 1234 3.0 13.0 1-3-2014

3 789 1.0 2.0 1-1-2014

4 789 2.0 3.8 1-2-2014

5 789 NaN NaN 1-3-2014

6 789 1.0 1.8 1-5-2014

NOTE

You might need to install the openpypxl module to support reading

and writing xlsx to Excel. This is easy with pip:

$ pip install openpyxl

If you are dealing with xls files, you will need xlrd and xlwt.

Again, pip makes this easy:

$ pip install xlrd xlwt

NOTE

The read_excel function has many options to help it divine how to

parse spreadsheets that aren't simply CSV files that are loaded into
Excel. You might need to play around with them. Often, it is easier
(but perhaps not quite as satisfying) to open a spreadsheet and simply
export a new sheet with only the data you need.

119

Data frames can also be converted to NumPy matrices for use in
applications that support them:
>>> sales.as_matrix() # NumPy representation

array([[1234, 5.0, 20.2, '1-1-2014'],

 [1234, 2.0, 8.0, '1-2-2014'],

 [1234, 3.0, 13.0, '1-3-2014'],

 [789, 1.0, 2.0, '1-1-2014'],

 [789, 2.0, 3.8, '1-2-2014'],

 [789, nan, nan, '1-3-2014'],

 [789, 1.0, 1.8, '1-5-2014']], dtype=object)

Index Operations

A data frame has various index operations. The first that we will explore
—.reindex—conforms the data to a new index and/or columns. To pull

out just the items at index 0 and 4, do the following:
>>> sales.reindex([0, 4])

 UPC Units Sales Date

0 1234 5.0 20.2 1-1-2014

4 789 2.0 3.8 1-2-2014

This method also supports column selection:
>>> sales.reindex(columns=['Date', 'Sales'])

 Date Sales

0 1-1-2014 20.2

1 1-2-2014 8.0

2 1-3-2014 13.0

3 1-1-2014 2.0

4 1-2-2014 3.8

5 1-3-2014 NaN

6 1-5-2014 1.8

Column and index selection may be combined to further refine
selection. In addition, new entries for both index values and column names
can be included. They will default to the fill_value optional parameter

(which is NaN unless specified):

>>> sales.reindex(index=[2, 6, 8],

... columns=['Sales', 'UPC', 'missing'])

 Sales UPC missing

2 13.0 1234.0 NaN

6 1.8 789.0 NaN

8 NaN NaN NaN

One common operation is to use another column as the index. The
.set_index method does this for us:

120

>>> by_date = sales.set_index('Date')

>>> by_date

 UPC Units Sales

Date

1-1-2014 1234 5.0 20.2

1-2-2014 1234 2.0 8.0

1-3-2014 1234 3.0 13.0

1-1-2014 789 1.0 2.0

1-2-2014 789 2.0 3.8

1-3-2014 789 NaN NaN

1-5-2014 789 1.0 1.8

NOTE

Be careful, if you think of the index as analogous to a primary key in
database parlance. Because the index can contain duplicate entries,
this description is not quite accurate. Use the verify_integrity

parameter to ensure uniqueness:
>>> sales.set_index('Date', verify_integrity=True)

Traceback (most recent call last):

 ...

ValueError: Index has duplicate keys: ['1-1-2014',

'1-2-2014', '1-3-2014']

To add an incrementing integer index to a data frame, use
.reset_index:

>>> by_date.reset_index()

 Date UPC Units Sales

0 1-1-2014 1234 5.0 20.2

1 1-2-2014 1234 2.0 8.0

2 1-3-2014 1234 3.0 13.0

3 1-1-2014 789 1.0 2.0

4 1-2-2014 789 2.0 3.8

5 1-3-2014 789 NaN NaN

6 1-5-2014 789 1.0 1.8

Getting and Setting Values

There are two methods to pull out a single "cell" in the data frame. One
—.iat—uses the position of the index and column (0-based):

>>> sales.iat[4, 2]

3.7999999999999998

The other option—.get_value—uses an index name and a column

name:

121

>>> by_date.get_value('1-5-2014', 'UPC')

789

Again, if a duplicate valued index is selected, the result will not be a
scalar, but will be an array (or possibly a data frame):
>>> by_date.get_value('1-2-2014', 'UPC')

array([1234, 789])

The .get_value method has a analog—.set_value—to assign a scalar

to an index and column value. To assign sales of 789 to index 6 (yes that
happens to also be a UPC value), do the following:
>>> sales.set_value(6, 'Sales', 789)

 UPC Units Sales Date

0 1234 5.0 20.2 1-1-2014

1 1234 2.0 8.0 1-2-2014

2 1234 3.0 13.0 1-3-2014

3 789 1.0 2.0 1-1-2014

4 789 2.0 3.8 1-2-2014

5 789 NaN NaN 1-3-2014

6 789 1.0 789.0 1-5-2014

There is no .iset_value method.

To insert a column at a specified location use the .insert method. Note

that this method operates in-place and does not have a return value. The
first parameter for the method is the zero-based location of the new
column. The next parameter is the new column name and the third
parameter is the new value. Below we insert a category column after UPC
(at position 1):
>>> sales.insert(1, 'Category', 'Food')

no return value!

>>> sales

 UPC Category Units Sales Date

0 1234 Food 5.0 20.2 1-1-2014

1 1234 Food 2.0 8.0 1-2-2014

2 1234 Food 3.0 13.0 1-3-2014

3 789 Food 1.0 2.0 1-1-2014

4 789 Food 2.0 3.8 1-2-2014

5 789 Food NaN NaN 1-3-2014

6 789 Food 1.0 789.0 1-5-2014

The value does not have to be a scalar, it could be a sequence or a
Series object, in which case it should have the same length as the data

frame.

122

NOTE

Column insertion is also available through index assignment on the
data frame. When new columns are added this way, they are always
appended to the end (the right-most column). To change the order of
the columns calling .reindex or indexing with the list of desired

columns would be necessary.

The .replace method is a powerful way to update many values of a

data frame across columns. To replace all 789's with 790 do the following:
>>> sales.replace(789, 790)

 UPC Category Units Sales Date

0 1234 Food 5.0 20.2 1-1-2014

1 1234 Food 2.0 8.0 1-2-2014

2 1234 Food 3.0 13.0 1-3-2014

3 790 Food 1.0 2.0 1-1-2014

4 790 Food 2.0 3.8 1-2-2014

5 790 Food NaN NaN 1-3-2014

6 790 Food 1.0 790.0 1-5-2014

Because the sales column for index 6 also has a value of 789, this will
be replaced as well. To fix this, instead of passing in a scalar for the
to_replace parameter, use a dictionary mapping column name to a

dictionary of value to new value. If the new sales value of 789.0 was also
erroneous, it could be updated in the same call:
>>> sales.replace({'UPC': {789: 790},

... 'Sales': {789: 1.4}})

 UPC Category Units Sales Date

0 1234 Food 5.0 20.2 1-1-2014

1 1234 Food 2.0 8.0 1-2-2014

2 1234 Food 3.0 13.0 1-3-2014

3 790 Food 1.0 2.0 1-1-2014

4 790 Food 2.0 3.8 1-2-2014

5 790 Food NaN NaN 1-3-2014

6 790 Food 1.0 1.4 1-5-2014

The .replace method will also accept regular expressions (they can

also be included in nested dictionaries) if the regex parameter is set to

True:

>>> sales.replace('(F.*d)', r'\1_stuff', regex=True)

 UPC Category Units Sales Date

0 1234 Food_stuff 5.0 20.2 1-1-2014

123

1 1234 Food_stuff 2.0 8.0 1-2-2014

2 1234 Food_stuff 3.0 13.0 1-3-2014

3 789 Food_stuff 1.0 2.0 1-1-2014

4 789 Food_stuff 2.0 3.8 1-2-2014

5 789 Food_stuff NaN NaN 1-3-2014

6 789 Food_stuff 1.0 789.0 1-5-2014

Deleting Columns

There are at least four ways to remove a column:

The .pop method

The .drop method with axis=1

The .reindex method

Indexing with a list of new columns

The .pop method takes the name of a column and removes it from the

data frame. It operates in-place. Rather than returning a data frame, it
returns the removed column. Below, the column subcat will be added and

then subsequently removed:
>>> sales['subcat'] = 'Dairy'

>>> sales

 UPC Category Units Sales Date subcat

0 1234 Food 5.0 20.2 1-1-2014 Dairy

1 1234 Food 2.0 8.0 1-2-2014 Dairy

2 1234 Food 3.0 13.0 1-3-2014 Dairy

3 789 Food 1.0 2.0 1-1-2014 Dairy

4 789 Food 2.0 3.8 1-2-2014 Dairy

5 789 Food NaN NaN 1-3-2014 Dairy

6 789 Food 1.0 789.0 1-5-2014 Dairy

>>> sales.pop('subcat')

0 Dairy

1 Dairy

2 Dairy

3 Dairy

4 Dairy

5 Dairy

6 Dairy

Name: subcat, dtype: object

>>> sales

 UPC Category Units Sales Date

0 1234 Food 5.0 20.2 1-1-2014

1 1234 Food 2.0 8.0 1-2-2014

2 1234 Food 3.0 13.0 1-3-2014

3 789 Food 1.0 2.0 1-1-2014

4 789 Food 2.0 3.8 1-2-2014

5 789 Food NaN NaN 1-3-2014

6 789 Food 1.0 789.0 1-5-2014

124

To drop a column with the .drop method, simply pass it in (or a list of

column names) along with setting the axis parameter to 1:

>>> sales.drop(['Category', 'Units'], axis=1)

 UPC Sales Date

0 1234 20.2 1-1-2014

1 1234 8.0 1-2-2014

2 1234 13.0 1-3-2014

3 789 2.0 1-1-2014

4 789 3.8 1-2-2014

5 789 NaN 1-3-2014

6 789 789.0 1-5-2014

To use the final two methods of removing columns, simply create a list
of desired columns. Pass that list into the .reindex method or the indexing

operation:
>>> cols = ['Sales', 'Date']

>>> sales.reindex(columns=cols)

 Sales Date

0 20.2 1-1-2014

1 8.0 1-2-2014

2 13.0 1-3-2014

3 2.0 1-1-2014

4 3.8 1-2-2014

5 NaN 1-3-2014

6 789.0 1-5-2014

>>> sales[cols]

 Sales Date

0 20.2 1-1-2014

1 8.0 1-2-2014

2 13.0 1-3-2014

3 2.0 1-1-2014

4 3.8 1-2-2014

5 NaN 1-3-2014

6 789.0 1-5-2014

Slicing

The pandas library provides powerful methods for slicing a data frame.
The .head and .tail methods allow for pulling data off the front and end

of a data frame. They come in handy when using an interpreter in
combination with pandas. By default, they display only the top five or
bottom five rows:
>>> sales.head()

 UPC Category Units Sales Date

0 1234 Food 5.0 20.2 1-1-2014

1 1234 Food 2.0 8.0 1-2-2014

2 1234 Food 3.0 13.0 1-3-2014

3 789 Food 1.0 2.0 1-1-2014

125

4 789 Food 2.0 3.8 1-2-2014

Simply pass in an integer to override the number of rows to show:
>>> sales.tail(2)

 UPC Category Units Sales Date

5 789 Food NaN NaN 1-3-2014

6 789 Food 1.0 789.0 1-5-2014

Data frames also support slicing based on index position and label. Let's
use a string based index so it will be clearer what the slicing options do:
>>> sales['new_index'] = list('abcdefg')

>>> df = sales.set_index('new_index')

>>> del sales['new_index']

To slice by position, use the .iloc attribute. Here we take rows in

positions two up to but not including four:
>>> df.iloc[2:4]

 UPC Category Units Sales Date

new_index

c 1234 Food 3.0 13.0 1-3-2014

d 789 Food 1.0 2.0 1-1-2014

Figure showing how to slice by row or column. Note that positional slicing uses the
half-open interval, while label based slicing is inclusive (closed interval).

We can also provide column positions that we want to keep as well. The
column positions need to follow a comma in the index operation. Here we
keep rows from two up to but not including row four. We also take
columns from zero up to but not including one (just the column in the zero
index position):
>>> df.iloc[2:4, 0:1]

126

 UPC

new_index

c 1234

d 789

There is also support for slicing out data by labels. Using the .loc

attribute, we can take index values a through d:

>>> df.loc['a':'d']

 UPC Category Units Sales Date

new_index

a 1234 Food 5.0 20.2 1-1-2014

b 1234 Food 2.0 8.0 1-2-2014

c 1234 Food 3.0 13.0 1-3-2014

d 789 Food 1.0 2.0 1-1-2014

And just like .iloc, .loc has the ability to specify columns by label. In

this example we only take the Units column, and thus it returns a series:

>>> df.loc['d':, 'Units']

new_index

d 1.0

e 2.0

f NaN

g 1.0

Name: Units, dtype: float64

Below is a summary of the data frame slicing constructs by position and
label. To pull out a subset of a data frame using the .iloc or .loc

attribute, we do an index operation with cols,rows specifiers, where either

specifier is optional.
Note, that when we only want to specify columns, but use all of the

rows, we provide a lone : to indicate to slice out all of the rows.

In contrast to normal Python slicing, which are half-open, meaning take
the start index and go up to, but not including the final index, indexing by
labels uses the closed interval. A closed interval includes not only the
initial location, but also the final location. Indexing by position uses the
half-open interval.

The slices are specified by putting a colon between the indices or
columns we want to keep. In addition, and again in contrast to Python
slicing constructs, you can provide a list of index or column values, if the
values are not contiguous.

127

SLICE RESULT

.iloc[i:j] Rows position i up to but not including j (half-open)

.iloc[:,i:j] Columns position i up to but not including j (half-open)

.iloc[[i,k,m]] Rows at i, k, and m (not an interval)

.loc[a:b] Rows from index label a through b (closed)

.loc[:,c:d] Columns from column label c through d (closed)

.loc[:[b, d, f]] Columns at labels b, d, and f (not an interval)

Figure showing various ways to slice a data frame. Note that we can slice by label or
position.

HINT

If you want to slice out columns by value, but rows by position, you
can chain index operations to .iloc or .loc together. Because, the

result of the invocation is a data frame or series, we can do further
filtering on the result.

Here we pull out columns UPC and Sales, but only the last 4

values:
>>> df.loc[:,['UPC', 'Sales']].iloc[-4:]

 UPC Sales

new_index

128

d 789 2.0

e 789 3.8

f 789 NaN

g 789 789.0

Alternatively, we mentioned avoiding .ix if you can, but this

might be a case where you could sneak it in:
>>> df.ix[-4:, ['UPC', 'Sales']]

 UPC Sales

new_index

d 789 2.0

e 789 3.8

f 789 NaN

g 789 789.0

Sorting

Sometimes, we need to sort a data frame by index, or the values in the
columns. The data frame operations are very similar to what we saw with
series.

Here is the sales data frame:
>>> sales

 UPC Category Units Sales Date

0 1234 Food 5.0 20.2 1-1-2014

1 1234 Food 2.0 8.0 1-2-2014

2 1234 Food 3.0 13.0 1-3-2014

3 789 Food 1.0 2.0 1-1-2014

4 789 Food 2.0 3.8 1-2-2014

5 789 Food NaN NaN 1-3-2014

6 789 Food 1.0 789.0 1-5-2014

To sort by column, use .sort_values. Let's sort the UPC column:

>>> sales.sort_values('UPC')

 UPC Category Units Sales Date

3 789 Food 1.0 2.0 1-1-2014

4 789 Food 2.0 3.8 1-2-2014

5 789 Food NaN NaN 1-3-2014

6 789 Food 1.0 789.0 1-5-2014

0 1234 Food 5.0 20.2 1-1-2014

1 1234 Food 2.0 8.0 1-2-2014

2 1234 Food 3.0 13.0 1-3-2014

NOTE

Avoid using the .sort method. It is now deprecated, because it does

an in-place sort by default. Use .sort_values instead.

129

The first parameter to .sort_values is the by argument. If we provide a

list of columns it will sort by the left-most column first, and then proceed
right:
>>> sales.sort_values(['Units', 'UPC'])

 UPC Category Units Sales Date

3 789 Food 1.0 2.0 1-1-2014

6 789 Food 1.0 789.0 1-5-2014

4 789 Food 2.0 3.8 1-2-2014

1 1234 Food 2.0 8.0 1-2-2014

2 1234 Food 3.0 13.0 1-3-2014

0 1234 Food 5.0 20.2 1-1-2014

5 789 Food NaN NaN 1-3-2014

To sort the index, use the .sort_index method. The index in this data

frame is already sorted, so we will sort it in reverse order:
>>> sales.sort_index(ascending=False)

 UPC Category Units Sales Date

6 789 Food 1.0 789.0 1-5-2014

5 789 Food NaN NaN 1-3-2014

4 789 Food 2.0 3.8 1-2-2014

3 789 Food 1.0 2.0 1-1-2014

2 1234 Food 3.0 13.0 1-3-2014

1 1234 Food 2.0 8.0 1-2-2014

0 1234 Food 5.0 20.2 1-1-2014

Summary

In this chapter we examined quite a bit of the methods on the DataFrame

object. We saw how to examine the data, loop over it, broadcast
operations, and serialize it. We also looked at index operations that were
very similar to the Series index operations. We saw how to do CRUD

operations and ended with slicing and sorting data.
In the next chapter, we will explore some of the statistical functionality

found in the data frame.

130

Data Frame Statistics

IF YOU ARE DOING DATA SCIENCE OR STATISTICS WITH PANDAS, YOU ARE IN LUCK,
because the data frame comes with basic functionality built in.

In this section, we will examine snow totals from Alta for the past
couple years. I scraped this data off the Utah Avalanche Center website 16,
but will use the .read_table function of pandas to create a data frame.

>>> data = '''year\tinches\tlocation

... 2006\t633.5\tutah

... 2007\t356\tutah

... 2008\t654\tutah

... 2009\t578\tutah

... 2010\t430\tutah

... 2011\t553\tutah

... 2012\t329.5\tutah

... 2013\t382.5\tutah

... 2014\t357.5\tutah

... 2015\t267.5\tutah'''

>>> snow = pd.read_table(StringIO(data))

>>> snow

 year inches location

0 2006 633.5 utah

1 2007 356.0 utah

2 2008 654.0 utah

3 2009 578.0 utah

4 2010 430.0 utah

5 2011 553.0 utah

6 2012 329.5 utah

7 2013 382.5 utah

8 2014 357.5 utah

9 2015 267.5 utah

describe and quantile

One of the methods I use a lot is the .describe method. This method

provides you with an overview of your data. When I load a new data set,
running .describe on it is typically the first thing I do.

With this dataset, the year column, although being numeric, when fed
through describe is not too interesting. But, this method is very useful to

131

quickly view the spread of snowfalls over ten years at Alta:

>>> snow.describe()

 year inches

count 10.00000 10.000000

mean 2010.50000 454.150000

std 3.02765 138.357036

min 2006.00000 267.500000

25% 2008.25000 356.375000

50% 2010.50000 406.250000

75% 2012.75000 571.750000

max 2015.00000 654.000000

Note that the location column, that has a string type, is ignored by
default. If we set the include parameter to 'all', then we also get

summary statistics for categorical and string columns:
>>> snow.describe(include='all')

 year inches location

count 10.00000 10.000000 10

unique NaN NaN 1

top NaN NaN utah

freq NaN NaN 10

mean 2010.50000 454.150000 NaN

std 3.02765 138.357036 NaN

min 2006.00000 267.500000 NaN

25% 2008.25000 356.375000 NaN

50% 2010.50000 406.250000 NaN

75% 2012.75000 571.750000 NaN

max 2015.00000 654.000000 NaN

The .quantile method, by default shows the 50% quantile, though the

q parameter can be specified to get different levels:

>>> snow.quantile()

year 2010.50

inches 406.25

dtype: float64

Here we get the 10% and 90% percentile levels. We can see that if 635
inches fall, we are at the 90% level:
>>> snow.quantile(q=[.1, .9])

 year inches

0.1 2006.9 323.30

0.9 2014.1 635.55

NOTE

Changing the q parameter to a list, rather than a scalar, makes the

.quantile method return a data frame, rather than a series.

132

To just get counts of non-empty cells, use the .count method:

>>> snow.count()

year 10

inches 10

location 10

dtype: int64

If you have data and want to know whether any of the values in the
columns evaluate to True in a boolean context, use the .any method:

>>> snow.any()

year True

inches True

location True

dtype: bool

This method can also be applied to a row, by using the axis=1

parameter:
>>> snow.any(axis=1)

0 True

1 True

2 True

3 True

4 True

5 True

6 True

7 True

8 True

9 True

dtype: bool

Likewise, there is a corresponding .all method to indicate whether all

of the values are truthy:
>>> snow.all()

year True

inches True

location True

dtype: bool

>>> snow.all(axis=1)

0 True

1 True

2 True

3 True

4 True

5 True

6 True

7 True

8 True

133

9 True

dtype: bool

Both .any and .all are pretty boring in this data set because they are all

truthy (non-empty or not false).
rank

The .rank method goes through every column and assigns a number to the

rank of that cell within the column. Again, the year column isn't
particularly useful here:
>>> snow.rank()

 year inches location

0 1.0 9.0 5.5

1 2.0 3.0 5.5

2 3.0 10.0 5.5

3 4.0 8.0 5.5

4 5.0 6.0 5.5

5 6.0 7.0 5.5

6 7.0 2.0 5.5

7 8.0 5.0 5.5

8 9.0 4.0 5.5

9 10.0 1.0 5.5

Because the default behavior is to rank by ascending order, this might
be the wrong order for snowfall (unless you are ranking worst snowfall).
To fix this, set the ascending parameter to False:

>>> snow.rank(ascending=False)

 year inches location

0 10.0 2.0 5.5

1 9.0 8.0 5.5

2 8.0 1.0 5.5

3 7.0 3.0 5.5

4 6.0 5.0 5.5

5 5.0 4.0 5.5

6 4.0 9.0 5.5

7 3.0 6.0 5.5

8 2.0 7.0 5.5

9 1.0 10.0 5.5

Note that because the location columns are all the same, the rank of that
column is the average by default. To change this behavior, we can set the
method parameter to 'min', 'max', 'first', or 'dense' to get the lowest,

highest, order of appearance, or ranking by group (instead of items)
respectively ('average' is the default):

>>> snow.rank(method='min')

 year inches location

134

0 1.0 9.0 1.0

1 2.0 3.0 1.0

2 3.0 10.0 1.0

3 4.0 8.0 1.0

4 5.0 6.0 1.0

5 6.0 7.0 1.0

6 7.0 2.0 1.0

7 8.0 5.0 1.0

8 9.0 4.0 1.0

9 10.0 1.0 1.0

NOTE

Specifying method='first' fails with non-numeric data:

>>> snow.rank(method='first')

Traceback (most recent call last):

 ...

ValueError: first not supported for non-numeric data

clip

Occasionally, there are outliers in the data. If this is problematic, the .clip

method trims a column (or row if axis=1) to certain values:

>>> snow.clip(lower=400, upper=600)

Traceback (most recent call last):

 ...

TypeError: unorderable types: str() >= int()

For our data, clipping fails as location is a column containing string

types. Unless your columns are semi-homogenous, you might want to run
the .clip method on the individual series or the subset of columns that

need to be clipped:
>>> snow[['inches']].clip(lower=400, upper=600)

 inches

0 600.0

1 400.0

2 600.0

3 578.0

4 430.0

5 553.0

6 400.0

7 400.0

8 400.0

9 400.0

Correlation and Covariance

135

We've already seen that the series object can perform a Pearson correlation
with another series. The data frame offers similar functionality, but it will
do a pairwise correlation with all of the numeric columns. In addition, it
will perform a Kendall or Spearman correlation, when those strings are
passed to the optional method parameter:

>>> snow.corr()

 year inches

year 1.000000 -0.698064

inches -0.698064 1.000000

>>> snow.corr(method='spearman')

 year inches

year 1.000000 -0.648485

inches -0.648485 1.000000

If you have two data frames that you want to correlate, you can use the
.corrwith method to compute column-wise (the default) or row-wise

(when axis=1) Pearson correlations:

>>> snow2 = snow[['inches']] - 100

>>> snow.corrwith(snow2)

inches 1.0

year NaN

dtype: float64

The .cov method of the data frame computes the pair-wise covariance

(non-normalized correlation):
>>> snow.cov()

 year inches

year 9.166667 -292.416667

inches -292.416667 19142.669444

Reductions

There are various reducing methods on the data frame, that collapse
columns into a single value. An example is the .sum method, which will

apply the add operation to all members of columns. Note, that by default,
string columns are concatenated:
>>> snow.sum()

year 20105

inches 4541.5

location utahutahutahutahutahutahutahutahutahutah

dtype: object

If you prefer only numeric sums, use numeric_only=True parameter:

136

>>> snow.sum(numeric_only=True)

year 20105.0

inches 4541.5

dtype: float64

To apply a multiplicative reduction, use the .prod method. Note that the

product ignores non-numeric rows:
>>> snow.prod()

year 1.079037e+33

inches 2.443332e+26

dtype: float64

The .describe method is the workhorse for quickly summarizing tables

of data. If you need the individual measures, pandas provides those as
well. This method includes: count, mean, standard deviation, minimum,
25% quantile, median, 75% quantile, and maximum value. Their
corresponding methods are .count, .mean, .std, .min,

.quantile(q=.25), .median, quantile(q=.75), and .max.

One nicety of these individual methods is that you can pass axis=1 to

get the reduction across the rows, rather than the columns:
>>> snow.mean()

year 2010.50

inches 454.15

dtype: float64

>>> snow.mean(axis=1)

0 1319.75

1 1181.50

2 1331.00

3 1293.50

4 1220.00

5 1282.00

6 1170.75

7 1197.75

8 1185.75

9 1141.25

dtype: float64

Variance is a measure that is not included in the .describe method

output. However, this calculation is available as a method named .var:

>>> snow.var()

year 9.166667

inches 19142.669444

dtype: float64

137

Other measures for describing dispersion and distributions are .mad,

.skew, and .kurt, for mean absolute deviation, skew, and kurtosis

respectively:
>>> snow.mad()

year 2.50

inches 120.38

dtype: float64

>>> snow.skew()

year 0.000000

inches 0.311866

dtype: float64

>>> snow.kurt()

year -1.200000

inches -1.586098

dtype: float64

As mentioned, the maximum and minimum values are provided by
describe. If you prefer to know the index of those values, you can use the
.idxmax and .idxmin methods respectively. Note that these fail with non-

numeric columns:
>>> snow.idxmax()

Traceback (most recent call last):

 ...

ValueError: could not convert string to float: 'utah'

>>> snow[['year', 'inches']].idxmax()

year 9

inches 2

dtype: int64

Summary

The pandas library provides basic statistical operations out of the box. This
chapter looked at the .describe method, which is one of the first tools I

reach for when looking at new data. We also saw how to sort data, clip it
to certain ranges, perform correlations, and reduce columns.

In the next chapter, we will look at the more advanced topics of
changing the shape of the data.

16 - https://utahavalanchecenter.org/alta-monthly-snowfall

138

https://utahavalanchecenter.org/alta-monthly-snowfall

Grouping, Pivoting, and Reshaping

ONE OF THE MORE ADVANCED FEATURES OF PANDAS IS THE ABILITY TO PERFORM

operations on groups of data frames. That is a little abstract, but power
users from Excel are familiar with pivot tables, and pandas gives us this
same functionality.

For this section we will use data representing student scores:
>>> scores = pd.DataFrame({

... 'name':['Adam', 'Bob', 'Dave', 'Fred'],

... 'age': [15, 16, 16, 15],

... 'test1': [95, 81, 89, None],

... 'test2': [80, 82, 84, 88],

... 'teacher': ['Ashby', 'Ashby', 'Jones', 'Jones']})

The data looks like this:

NAME AGE TEST1 TEST2 TEACHER

Adam 15 95 80 Ashby

Bob 16 81 82 Ashby

Dave 16 89 84 Jones

Fred 15 88 Jones

Note that Fred is missing a score from test1. That could represent that he
did not take the test, or that someone forget to enter his score.

Reducing Methods in groupby

The lower level workhorse that provides the ability to group data frames
by column values, then merge them back into a result is the .groupby

method. As an example, on the scores data frame, we will compute the

median scores for each teacher. First we call .groupby and then invoke

.median on the result:

>>> scores.groupby('teacher').median()

139

 age test1 test2

teacher

Ashby 15.5 88.0 81.0

Jones 15.5 89.0 86.0

140

Figure showing the split, apply, and combine steps on a groupby object. Note that
there are various built-in methods, and also the apply method, which allows arbitrary

operations.

This included the age column, to ignore that we can slice out just the
test columns:
>>> scores.groupby('teacher').median()[['test1', 'test2']]

 test1 test2

teacher

Ashby 88.0 81.0

Jones 89.0 86.0

The result of calling .groupby is a GroupBy object. In this case, the

object has grouped all the rows with the same teach together. Calling
.median on the GroupBy object returns a new DataFrame object that has the

median score for each teacher group.

141

Grouping can be very powerful, and you can use multiple columns to
group by as well. To find the median values for every age group for each
teacher, simply group by teacher and age:
>>> scores.groupby(['teacher', 'age']).median()

 test1 test2

teacher age

Ashby 15 95.0 80

 16 81.0 82

Jones 15 NaN 88

 16 89.0 84

NOTE

When you group by multiple columns, the result has a hierarchical
index or multi-level index.

If we want both the minimum and maximum test scores by teacher, we
use the .agg method and pass in a list of functions to call:

>>> scores.groupby(['teacher', 'age']).agg([min, max])

 name test1 test2

 min max min max min max

teacher age

Ashby 15 Adam Adam 95.0 95.0 80 80

 16 Bob Bob 81.0 81.0 82 82

Jones 15 Fred Fred NaN NaN 88 88

 16 Dave Dave 89.0 89.0 84 84

The groupby object has many methods that reduce group values to a
single value, they are:

METHOD RESULT

.all Boolean if all cells in group are True

.any Boolean if any cells in group are True

.count Count of non null values

.size Size of group (includes null)

.idxmax Index of maximum values

.idxmin Index of minimum values

.quantile Quantile (default of .5) of group

142

.agg(func) Apply func to each group. If func returns scalar, then reducing

.apply(func) Use split-apply-combine rules

.last Last value

.nth Nth row from group

.max Maximum value

.min Minimum value

.mean Mean value

.median Median value

.sem Standard error of mean of group

.std Standard deviation

.var Variation of group

.prod Product of group

.sum Sum of group

Pivot Tables

Using a pivot table, we can generalize certain groupby behaviors. To get
the median teacher scores we can run the following:
>>> scores.pivot_table(index='teacher',

... values=['test1', 'test2'],

... aggfunc='median')

 test1 test2

teacher

Ashby 88.0 81

Jones 89.0 86

143

Figure showing different parameters provided to pivot_table method.

If we want to aggregate by teacher and age, we simply use a list with
both of them for the index parameter:

>>> scores.pivot_table(index=['teacher', 'age'],

... values=['test1', 'test2'],

... aggfunc='median')

 test1 test2

teacher age

Ashby 15 95.0 80

 16 81.0 82

Jones 15 NaN 88

 16 89.0 84

If we want to apply multiple functions, just use a list of them. Here, we
look at the minimum and maximum test scores by teacher:
>>> scores.pivot_table(index='teacher',

... values=['test1', 'test2'],

... aggfunc=[min, max])

 min max

 test1 test2 test1 test2

teacher

Ashby 81.0 80 95.0 82

Jones 89.0 84 89.0 88

144

We can see that pivot table and group by behavior is very similar. Many
spreadsheet power users are more familiar with the declarative style of
.pivot_table, while programmers not accustomed to pivot tables prefer

using group by semantics.
One additional feature of pivot tables is the ability to add summary

rows. Simply by setting margins=True we get this functionality:

>>> scores.pivot_table(index='teacher',

... values=['test1', 'test2'],

... aggfunc='median', margins=True)

 test1 test2

teacher

Ashby 88.0 81.0

Jones 89.0 86.0

All 89.0 83.0

145

Figure showing results of different parameters provided to pivot_table method.

Melting Data

In OLAP terms, there is a notion of a fact and a dimension. A fact is a
value that is measured and reported on. A dimension is a group of values
the describe the conditions of the fact. In a sales scenario, typical facts
would be the number of sales of an item and the cost of the item. The
dimensions might be the store where the item was sold, the date, and the
customer.

The dimensions can then be sliced to dissect the data. We might want to
view sales by store. A dimension may be hierarchical, a store could have a
region, zip code, or state. We could view sales by any of those dimensions.

The scores data is in a wide format (sometimes called stacked or record

form). In contrast to a "long" format (sometimes called tidy form), where
each row contains a single fact (with perhaps other variables describing the
dimensions). If we consider test score to be a fact, this wide format has
more than one fact in a row, hence it is wide.

146

Often, tools require that data be stored in a long format, and only have
one fact per row. This format is denormalized and repeats many of the
dimensions, but makes analysis easier.

Our wide version looks like:

NAME AGE TEST1 TEST2 TEACHER

Adam 15 95 80 Ashby

Bob 16 81 82 Ashby

Dave 16 89 84 Jones

Fred 15 88 Jones

A long version of our scores might look like this:

NAME AGE TEST SCORE

Adam 15 test1 95

Bob 16 test1 81

Dave 16 test1 89

Fred 15 test1 NaN

Adam 15 test2 80

Bob 16 test2 82

Dave 16 test2 84

Fred 15 test2 88

Using the melt function in pandas, we can tweak the data so it becomes

long. Since I am used to OLAP parlance (facts and dimensions), I will use
those terms to explain how to use melt.

In the scores data frame, we have facts in the test1 and test2 column.

We want to have a new data frame, where the test name is pulled out into
its own column, and the scores for the test are in a single column. To do
this, we put the list of fact columns in the value_vars parameter. Any

dimensions we want to keep should be listed in the id_vars parameter.

147

Figure showing columns that are preserved during melting, id_vars, and column
names that are pulled into columns, value_vars.

Here we keep name and age as dimensions, and pull out the test scores
as facts:
>>> pd.melt(scores, id_vars=['name', 'age'],

... value_vars=['test1', 'test2'])

 name age variable value

0 Adam 15 test1 95.0

1 Bob 16 test1 81.0

2 Dave 16 test1 89.0

3 Fred 15 test1 NaN

4 Adam 15 test2 80.0

5 Bob 16 test2 82.0

6 Dave 16 test2 84.0

7 Fred 15 test2 88.0

If we want to change the description of the fact from variable to a

more descriptive name, pass that as the var_name parameter. To change

the name of the fact column (it defaults to value), use the value_name

parameter:

148

>>> pd.melt(scores, id_vars=['name', 'age'],

... value_vars=['test1', 'test2'],

... var_name='test', value_name='score')

 name age test score

0 Adam 15 test1 95.0

1 Bob 16 test1 81.0

2 Dave 16 test1 89.0

3 Fred 15 test1 NaN

4 Adam 15 test2 80.0

5 Bob 16 test2 82.0

6 Dave 16 test2 84.0

7 Fred 15 test2 88.0

NOTE

Long data is also referred to as tidy data. See the Tidy Data paper 17

by Hadley Wickham.

Converting Back to Wide

Using a pivot table, we can go from long format to wide format. It is a
little more involved going in the reverse direction:
>>> long_df = pd.melt(scores, id_vars=['name', 'age'],

... value_vars=['test1', 'test2'],

... var_name='test', value_name='score')

First, we pivot, using the dimensions as the index parameter, the name

of the fact column name as the columns parameter, and the fact column as

the values parameter:

>>> wide_df = long_df.pivot_table(index=['name', 'age'],

... columns=['test'],

... values=['score'])

>>> wide_df

 score

test test1 test2

name age

Adam 15 95.0 80.0

Bob 16 81.0 82.0

Dave 16 89.0 84.0

Fred 15 NaN 88.0

Note that this creates hierarchical column labels, (or multi-level) and
hierarchical index. To flatten the index, use the .reset_index method. It

will take the existing index, and make a column (or columns if it is
hierarchical):

149

>>> wide_df = wide_df.reset_index()

>>> wide_df

 name age score

test test1 test2

0 Adam 15 95.0 80.0

1 Bob 16 81.0 82.0

2 Dave 16 89.0 84.0

3 Fred 15 NaN 88.0

To flatten the nested columns, we can use the .get_level_values

method from the column attribute. This is a little trickier, because we want

to merge into the level 1 columns the values from level 0, if level 1 is the
empty string. I'm going to use a conditional expression inside of a list
comprehension to do the job:
>>> cols = wide_df.columns

>>> cols.get_level_values(0)

Index(['name', 'age', 'score', 'score'], dtype='object')

>>> cols.get_level_values(1)

Index(['', '', 'test1', 'test2'], dtype='object', name='test')

>>> l1 = cols.get_level_values(1)

>>> l0 = cols.get_level_values(0)

>>> names = [x[1] if x[1] else x[0] for x in zip(l0, l1)]

>>> names

['name', 'age', 'test1', 'test2']

Finally, set the new names as the column names:
>>> wide_df.columns = names

>>> wide_df

 name age test1 test2

0 Adam 15 95.0 80.0

1 Bob 16 81.0 82.0

2 Dave 16 89.0 84.0

3 Fred 15 NaN 88.0

Creating Dummy Variables

A dummy variable (sometimes known as an indicator variable) is a
variable that has a value of 1 or 0. This variable typically indicates whether
the presence or absence of a categorical feature is found. For example, in
the scores data frame, we have an age column. Some systems might

prefer to have a column for every age (15 and 16 in this case), with a 1 or
0 to indicate whether the row has that age. This can create pretty sparse
matrixes if there are many categories.

150

Many machine learning models require that their input be crafted in this
way. As pandas is often used to prep data for models, let's see how to do it
with the age column. The get_dummies function provides what we need:

>>> pd.get_dummies(scores, columns=['age'], prefix='age')

 name teacher test1 test2 age_15 age_16

0 Adam Ashby 95.0 80 1.0 0.0

1 Bob Ashby 81.0 82 0.0 1.0

2 Dave Jones 89.0 84 0.0 1.0

3 Fred Jones NaN 88 1.0 0.0

The columns parameter refers to a list (note a single string will fail) of

columns we want to change into dummy columns. The prefix parameter

specifies what we want to prefix each of the category values with when
they are turned into column names.

Undoing Dummy Variables

Creating dummy variables is easy. Undoing them is harder. Here is a
function that will undo it:
>>> def undummy(df, prefix, new_col_name, val_type=float):

... ''' df - dataframe with dummy columns

... prefix - prefix of dummy columns

... new_col_name - column name to replace dummy columns

... val_type - callable type for new column

... '''

... dummy_cols = [col for col in df.columns

... if col.startswith(prefix)]

...

... # map of index location of dummy variable to new value

... idx2val = {i:val_type(col[len(prefix):]) for i, col

... in enumerate(dummy_cols)}

...

... def get_index(vals): # idx of dummy col to use

... return list(vals).index(1)

...

... # using the dummy_cols lookup the new value by idx

... ser = df[dummy_cols].apply(

... lambda x: idx2val.get(get_index(x), None), axis=1)

... df[new_col_name] = ser

... df = df.drop(dummy_cols, axis=1)

... return df

>>> dum = pd.get_dummies(scores, columns=['age'], prefix='age')

>>> undummy(dum, 'age_', 'age')

 name teacher test1 test2 age

0 Adam Ashby 95.0 80 15.0

1 Bob Ashby 81.0 82 16.0

2 Dave Jones 89.0 84 16.0

3 Fred Jones NaN 88 15.0

Stacking and Unstacking

151

Another mechanism to tweak data is to "stack" and "unstack" it. This is
particularly useful when you have multi-level indices, which you get from
pivot tables if you pass in a list for the index parameter.

Unstacking takes a dataset that has a multi-level index and pulls out the
inner most level of the index and makes it the inner most level the
columns. Stacking does the reverse. See the image for a visual example.

152

Figure showing how to stack and unstack data. Stack takes the innermost column
label and places them in the index. Unstack takes the innermost index labels and places

them in the columns.

Summary

This chapter covered some more advanced topics of pandas. We saw how
to group by columns and perform reductions. We also saw how some of

153

these group by operations can be done with the .pivot_table method.

Then we looked at melting data, creating dummy variables, and stacking.
Often, we you find you need your data organized slightly differently,

you can use one of these tools to re-arrange it for you. It will be quicker,
and have less code than an imperative solution requiring iterating over the
values manually. But, it might require a little while pondering how to
transform the data. Play around with these methods and check out other
examples of how people are using them in the wild for inspiration.

17 - http://vita.had.co.nz/papers/tidy-data.html

154

http://vita.had.co.nz/papers/tidy-data.html

Dealing With Missing Data

MORE OFTEN THAN I WOULD LIKE, I SPEND TIME BEING A DATA JANITOR.
Cleaning up, removing, updating, and tweaking data I need to deal with.
This can be annoying, but luckily pandas has good support for these
actions. We've already seen much of this type of work. In this section we
will discuss dealing with missing data.

Let's start out by looking a simple data frame with missing data. I'll use
the StringIO class and the pandas read_table function to simulate

reading tabular data:
>>> import io

>>> data = '''Name|Age|Color

... Fred|22|Red

... Sally|29|Blue

... George|24|

... Fido||Black'''

>>> df = pd.read_table(io.StringIO(data), sep='|')

This data is missing some values:
>>> df

 Name Age Color

0 Fred 22.0 Red

1 Sally 29.0 Blue

2 George 24.0 NaN

3 Fido NaN Black

Data can be missing for many reasons. Here are a few, though there are
more:

User error - User did not enter data
Programming error - Logic drops data
Integration error - When integrating data systems, syncing is broken
Hardware issues - Storage devices out of space

155

Measurement error - When measuring amounts, there might be a
difference between 0 and a lack of measurement

Perhaps more insidious is when you are missing (a big chunk of) data
and don't even notice it. I've found that plotting can be a useful tool to
visually see holes in the data. Below we will discuss a few more.

In our df data, one might assume that there should be an age for every

row. Every living thing has an age, but Fido's is missing. Is that because

he didn't want anyone to know how old he was? Maybe he doesn't know
his birthday? Maybe he isn't a human, so giving him an age doesn't make
sense. To effectively deal with missing data, it is useful to determine
which data is missing and why it is missing. This will aid in deciding what
to do with the missing data. Unfortunately, this book can not help with
that. That requires sleuthing and often non-programming related skills.

Finding Missing Data

The .isnull method of a data frame returns a data frame filled with

boolean values. The cells are True where the data is missing:
>>> df.isnull()

 Name Age Color

0 False False False

1 False False False

2 False False True

3 False True False

With our small dataset we can visually inspect that there is missing data.
With larger datasets of many columns and perhaps millions of rows,
inspection doesn't work as well. Applying the .any method to the result

will give you a series that has the column names as index labels and
boolean values that indicate whether a column has missing values:
>>> df.isnull().any()

Name False

Age True

Color True

dtype: bool

Dropping Missing Data

156

Dropping rows with missing data is straightforward. To drop any row that
is missing data, simply use the .dropna method:

>>> df.dropna()

 Name Age Color

0 Fred 22.0 Red

1 Sally 29.0 Blue

To be more selective, we can use the result of .notnull. This is the

complement of .isnull. With this data frame in hand, we can simply

choose which column to mask by. We can remove missing ages. Note that
the column type of Age will be a float and not an integer type, even after

we removed the NaN that caused the coercion to float in the first place:

>>> valid = df.notnull()

>>> df[valid.Age]

 Name Age Color

0 Fred 22.0 Red

1 Sally 29.0 Blue

2 George 24.0 NaN

Or we can get rows for valid colors by filtering with the Color column

of the valid data frame:

>>> df[valid.Color]

 Name Age Color

0 Fred 22.0 Red

1 Sally 29.0 Blue

3 Fido NaN Black

What if you wanted to get the rows that were valid for both age and
color? You could combine the column masks using a boolean and operator
(&):

>>> mask = valid.Age & valid.Color

>>> mask

0 True

1 True

2 False

3 False

dtype: bool

>>> df[mask]

 Name Age Color

0 Fred 22.0 Red

1 Sally 29.0 Blue

157

In this case, the result is the same as .dropna, but in other cases it might

be ok to keep missing values around in certain columns. When that need
arises, .dropna is too heavy-handed, and you will need to be a little more

fine grained with your mask.

NOTE

In pandas, there is often more than one way to do something. Another
option to combine the two column masks would be like this. Use the
.apply method on the columns with the Python built-in function all.

To collapse these boolean values along the row, make sure you pass
the axis=1 parameter:

>>> mask = valid[['Age', 'Color']].apply(all, axis=1)

>>> mask

0 True

1 True

2 False

3 False

dtype: bool

In general, I try to prefer the simplest method. In this case, that is
the & operator. If you needed to apply a user defined function across

the row to determine if a row is valid, then .apply would be a better

choice.

Inserting Data for Missing Data

Continuing on with this data, we will examine methods to fill in the
missing data. Below is the data frame:
>>> df

 Name Age Color

0 Fred 22.0 Red

1 Sally 29.0 Blue

2 George 24.0 NaN

3 Fido NaN Black

The easiest method to replace missing data is via the .fillna method.

With a scalar argument it will replace all missing data with that value:
>>> df.fillna('missing')

158

 Name Age Color

0 Fred 22 Red

1 Sally 29 Blue

2 George 24 missing

3 Fido missing Black

To specify values on a per column basis, pass in a dictionary to
.fillna:

>>> df.fillna({'Age': df.Age.median(),

... 'Color': 'Pink'})

 Name Age Color

0 Fred 22.0 Red

1 Sally 29.0 Blue

2 George 24.0 Pink

3 Fido 24.0 Black

An alternate method of replacing missing data is to use the fillna

method with either ffill or bfill. These options do either a forward fill

(take the value before the missing value) or backwards fill (use the value
after the missing value) respectively:
>>> df.fillna(method='ffill')

 Name Age Color

0 Fred 22.0 Red

1 Sally 29.0 Blue

2 George 24.0 Blue

3 Fido 24.0 Black

>>> df.fillna(method='bfill')

 Name Age Color

0 Fred 22.0 Red

1 Sally 29.0 Blue

2 George 24.0 Black

3 Fido NaN Black

NOTE

A ffill of bfill is not guaranteed to insert data if the first or last

value is missing. The .fillna call with bfill above illustrates this.

This is a small example of an operation that you cannot blindly
apply to a dataset. Just because it worked on a past dataset, it is not a
guarantee that it will work on a future dataset.

If your data is organized row-wise then providing axis=1 will fill along

the row axis:

159

>>> df.fillna(method='ffill', axis=1)

 Name Age Color

0 Fred 22 Red

1 Sally 29 Blue

2 George 24 24

3 Fido Fido Black

If you have numeric data that has some ordering, then another option is
the .interpolate method. This will fill in values based on the method

parameter provided:
>>> df.interpolate()

 Name Age Color

0 Fred 22.0 Red

1 Sally 29.0 Blue

2 George 24.0 NaN

3 Fido 24.0 Black

Below are tables describing the different interpolate options for method:

METHOD EFFECT

linear Treat values as evenly spaced (default)

time Fill in values based in based on time index

values/index Use the index to fill in blanks

If you have scipy installed you can use the following additional

options:

METHOD EFFECT

nearest Use nearest data point

zero Zero order spline (use last value seen)

slinear Spline interpolation of first order

quadratic Spline interpolation of second order

cubic Spline interpolation of third order

polynomial Polynomial interpolation (pass order param)

spline Spline interpolation (pass order param)

barycentric Use Barycentric Lagrange Interpolation

krogh Use Krogh Interpolation

piecewise_polynomial Use Piecewise Polynomial Interpolation

160

pchip Use Piecewise Cubic Hermite Interpolating Polynomial

Finally, you can use the .replace method to fill in missing values:

>>> df.replace(np.nan, value=-1)

 Name Age Color

0 Fred 22.0 Red

1 Sally 29.0 Blue

2 George 24.0 -1

3 Fido -1.0 Black

Note that if you try to replace None, pandas will throw an error, as this is

the default value for the value parameter:

>>> df.replace(None, value=-1)

Traceback (most recent call last):

 ...

TypeError: 'regex' must be a string or a compiled regular

expression or a list or dict of strings or regular expressions,

you passed a 'bool'

Summary

In the real world data is messy. Sometimes you have to tweak it slightly or
filter it. And sometimes, it is just missing. In these cases, having insight
into your data and where it came from is invaluable.

In this chapter we saw how to find missing data. We saw how to simply
drop that data that is incomplete. We also saw methods for filling in the
missing data.

161

Joining Data Frames

DATA FRAMES HOLD TABULAR DATA. DATABASES HOLD TABULAR DATA. YOU CAN

perform many of the same operations on data frames that you do to
database tables. In this section we will examine joining data frames.

Here are the two tables we will examine:

INDEX COLOR NAME

0 Blue John

1 Blue George

2 Purple Ringo

INDEX CARCOLOR NAME

3 Red Paul

1 Blue George

2 Ringo

Adding Rows to Data Frames

Let's assume that we have two data frames that we want to combine into a
single data frame, with rows from both. The simplest way to do this is with
the concat function. Below, we create two data frames:

>>> df1 = pd.DataFrame({'name': ['John', 'George', 'Ringo'],

... 'color': ['Blue', 'Blue', 'Purple']})

>>> df2 = pd.DataFrame({'name': ['Paul', 'George', 'Ringo'],

... 'carcolor': ['Red', 'Blue', np.nan]},

... index=[3, 1, 2])

The concat function in the pandas library accepts a list of data frames

to combine. It will find any columns that have the same name, and use a
single column for each of the repeated columns. In this case name is

common to both data frames:

162

>>> pd.concat([df1, df2])

 carcolor color name

0 NaN Blue John

1 NaN Blue George

2 NaN Purple Ringo

3 Red NaN Paul

1 Blue NaN George

2 NaN NaN Ringo

Note that .concat preserves index values, so the resulting data frame

has duplicate index values. If you would prefer an error when duplicates
appear, you can pass the verify_integrity=True parameter setting:

>>> pd.concat([df1, df2], verify_integrity=True)

Traceback (most recent call last):

 ...

ValueError: Indexes have overlapping values: [1, 2]

Alternatively, if you would prefer that pandas create new index values
for you, pass in ignore_index=True as a parameter:

>>> pd.concat([df1, df2], ignore_index=True)

 carcolor color name

0 NaN Blue John

1 NaN Blue George

2 NaN Purple Ringo

3 Red NaN Paul

4 Blue NaN George

5 NaN NaN Ringo

Adding Columns to Data Frames

The concat function also has the ability to align data frames based on

index values, rather than using the columns. By passing axis=1, we get

this behavior:
>>> pd.concat([df1, df2], axis=1)

 color name carcolor name

0 Blue John NaN NaN

1 Blue George Blue George

2 Purple Ringo NaN Ringo

3 NaN NaN Red Paul

Note that this repeats the name column. Using SQL, we can join two

database tables together based on common columns. If we want to perform
a join like a database join on data frames, we need to use the .merge

method. We will cover that in the next section.

Joins

163

Databases have different types of joins. The four common ones include
inner, outer, left, and right. The data frame has a method to support these
operations. Sadly, it is not the .join method, but rather the .merge

method.

164

Figure showing how the result of four different joins: inner, outer, left, and right.

NOTE

The .join method is meant for joining based on index, rather than

columns. In practice I find myself joining based on columns instead
of index values.

To use the .join method to join based on column values, you need

to set that column as the index first:
>>> df1.set_index('name').join(df2.set_index('name'))

 color carcolor

name

John Blue NaN

George Blue Blue

Ringo Purple NaN

It it easier to just use the .merge method.

165

The default join type for the .merge method is an inner join. The .merge

method looks for common column names. It then aligns the values in those
columns. If both data frames have values that are the same, they are kept
along with the remaining columns from both data frames. Rows with
values in the aligned columns that only appear in one data frame are
discarded:
>>> df1.merge(df2) # inner join

 color name carcolor

0 Blue George Blue

1 Purple Ringo NaN

When the how='outer' parameter setting is passed in, an outer join is

performed. Again, the method looks for common column names. It aligns
the values for those columns, and adds the values from the other columns
of both data frames. If a either data frame had a value in the field that we
join on that was absent from the other, the new columns are filled with
NaN:

>>> df1.merge(df2, how='outer')

 color name carcolor

0 Blue John NaN

1 Blue George Blue

2 Purple Ringo NaN

3 NaN Paul Red

To perform a left join, pass the how='left' parameter setting. A left

join keeps only the values from the overlapping columns in the data frame
that the .merge method is called on. If the other data frame is missing

aligned values, NaN is used to fill in their values:

>>> df1.merge(df2, how='left')

 color name carcolor

0 Blue John NaN

1 Blue George Blue

2 Purple Ringo NaN

Finally, there is support for a right join as well. A right join keeps the
values from the overlapping columns in the data frame that is passed in as
the first parameter of the .merge method. If the data frame that .merge was

166

called on has aligned values, they are kept, otherwise NaN is used to fill in

the missing values:
>>> df1.merge(df2, how='right')

 color name carcolor

0 Blue George Blue

1 Purple Ringo NaN

2 NaN Paul Red

The .merge method has a few other parameters that turn out to be useful

in practice. The table below lists them:

PARAMETER MEANING

on Column names to join on. String or list. (Default is intersection of
names).

left_on Column names for left data frame. String or list. Used when names
don't overlap.

right_on Column names for right data frame. String or list. Used when
names don't overlap.

left_index Join based on left data frame index. Boolean

right_index Join based on right data frame index. Boolean

Summary

Data can often have more utility if we combine it with other data. In the
70's, relational algebra was invented to describe various joins among
tabular data. The .merge method of the DataFrame lets us apply these

operations to tabular data in the pandas world. This chapter described
concatenation, and the four basic joins that are possible via .merge.

167

Avalanche Analysis and Plotting

THIS CHAPTER WILL WALK THROUGH A DATA ANALYSIS AND VISUALIZATION

project. It will also include many examples of plotting in pandas.
I live at the base of the Wasatch Mountains in Utah. In the winter it can

snow quite a bit, which makes for great skiing. In order to get really great
skiing (ie powder), you need to ski in a resort during a storm, be first in
line at the resort the morning after a storm, or hike up a backcountry hill.

Hiking, or skinning up a hill, is quite a workout, but gives you access to
fresh powder. In addition to wearing out your legs, one must also be
cognizant of the threat of avalanches. It just so happens that aspects that
make for great skiing also happen to be great avalanche paths. What
follows is an analysis I did of the data collected by the Utah Avalanche
Center 18.

Getting Data

The Utah Avalanche Center has great data, but lacks an API to get easy
access to the data. I resorted to crawling the data, using the requests 19 and
Beautiful Soup 20 libraries. By looking at the source of the data, we see that
the table resides in a page that lists summaries of the avalanches, and
another page that contains details.

168

Figure showing overview of fatal avalanches

From the HTML source of the overview page we find the following
code:
<div class="content">

 <div class="view view-avalanches view-id-avalanches

 view-display-id-page_1>

 <div class="view-content">

 <table class="views-table cols-7" >

 <thead>

 <tr>

 <th class="views-field

 views-field-field-occurrence-date" >Date</th>

 <th class="views-field

 views-field-field-region-forecaster" >Region</th>

 <th class="views-field

 views-field-field-region-forecaster-1" >Place</th>

 <th class="views-field

 views-field-field-trigger" >Trigger</th>

 <th class="views-field

 views-field-field-killed" >Number Killed</th>

 <th class="views-field

 views-field-view-node" ></th>

 <th class="views-field

 views-field-field-coordinates" >Coordinates</th>

 </tr>

 </thead>

 <tbody>

 <tr class="odd views-row-first">

 <td class="views-field

 views-field-field-occurrence-date" >

 <span class="date-display-single" property="dc:date"

 datatype="xsd:dateTime"

 content="2015-03-04T00:00:00-07:00">03/4/2015

 </td>

169

 <td class="views-field

 views-field-field-region-forecaster" >Ogden</td>

 <td class="views-field

 views-field-field-region-forecaster-1" >

 Hells Canyon</td>

 <td class="views-field

 views-field-field-trigger" >Snowboarder</td>

 <td class="views-field views-field-field-killed">1</td>

 <td class="views-field views-field-view-node" >

 Details</td>

Upon inspection we see that inside of the <tr> elements are the names

and values for data that might be interesting. We can pull the name off of
the end of the class value that starts with views-field-field. The value

is the text of the <td> element. For example, from the HTML below:

<td class="views-field

 views-field-field-region-forecaster" >Ogden</td>

There is a class attribute that has two space separated class names. The

name is region-forecaster (the end of views-field-field-region-

forecaster class name), and the value is Ogden.

Here is some code that will scrape this data:
from bs4 import BeautifulSoup

import pandas as pd

import requests as r

base = 'https://utahavalanchecenter.org/'

url = base + 'avalanches/fatalities'

headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; '\

 'Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, '\

 'like Gecko) Chrome/39.0.2171.95 Safari/537.36'}

def get_avalanches(url):

 req = r.get(url, headers=headers)

 data = req.text

 soup = BeautifulSoup(data)

 content = soup.find(id="content")

 trs = content.find_all('tr')

 res = []

 for tr in trs:

 tds = tr.find_all('td')

 data = {}

 for td in tds:

 name, value = get_field_name_value(td)

 if not name:

 continue

 data[name] = value

 if data:

 res.append(data)

170

 return res

def get_field_name_value(elem):

 tags = elem.get('class')

 start = 'views-field-field-'

 for t in tags:

 if t.startswith(start):

 return t[len(start):], ''.join(elem.stripped_strings)

 elif t == 'views-field-view-node':

 return 'url', elem.a['href']

 return None, None

The get_avalanches function spoofs a modern browser (see headers),

and loops over all the table rows (<tr>) in the tag with an id set to

content. It stores in a dictionary the names and values from the rows of

information. The get_field_name_values takes in a <td> element and

pulls out the names and values from it.
We can get a list of dictionaries per avalanche with the following line:
avs = get_avalanches(url)

171

172

Figure showing details of fatal avalanches

At this point we have overview data. We want to crawl the detail page
for each avalanche to get more information, such as elevation, slope,
aspect, and more. The source of the detail page looks like this:
<div id="content" class="column"><div class="section">

 <h1>Avalanche: East Kessler</h1>

 <div class="region region-content">

 <div id="block-system-main" class="block block-system">

 <div class="content">

 <div id="node-23838" class="node node-avalanche">

 <span property="dc:title"

 content="Avalanche: East Kessler">

 ...

 <div class="field field-name-field-observation-date

 field-type-datetime field-label-above">

 <div class="field-label">Observation Date</div>

 <div class="field-items">

 <div class="field-item even">

 Thursday, March 5, 2015

 </div>

 </div>

 </div>

The interesting data resides in <div> tags that have class set to field.

The name is found in a <div> with class set to field-label and the value

in a <div> with class set to field-item.

Here is some code that takes the base url and the dictionary containing
the overview for that avalanche. It iterates over every class set to field

and updates the dictionary with the detailed data:
def get_avalanche_detail(url, item):

 req = r.get(url + item['url'], headers=headers)

 data = req.text

 soup = BeautifulSoup(data)

 content = soup.find(id='content')

 field_divs = content.find_all(class_='field')

 for div in field_divs:

 key_elem = div.find(class_='field-label')

 if key_elem is None:

 print("NONE!!!", div)

 continue

 key = ''.join(key_elem.stripped_strings)

 try:

 value_elem = div.find(class_='field-item')

 value = ''.join(value_elem.stripped_strings).\

 replace(u'\xa0', u' ')

 except AttributeError as e:

 print(e, div)

 if key in item:

173

 continue

 item[key] = value

 return item

def get_avalanche_details(url, avs):

 res = []

 for item in avs:

 item = get_avalanche_detail(url, item)

 res.append(item)

 return res

With this code in hand we can create a data frame with the data by
running the following code. Note that this takes about two minutes to
scrape the data:
details = get_avalanche_details(base, avs)

df = pd.DataFrame(details)

Sometimes you can get your data by querying a database or using an
API. Sometimes you need to resort to scraping.

Munging Data

At this point we have the data, now we want to inspect it, clean it, and
munge it. In other words, we get to be a data janitor.

If you want to try this on your computer, you can get access to the
scraped data 21 on my GitHub account.

The first thing to do is to check out the datatypes of the columns. We
want to make sure we have numeric data, and datetime data in addition to
strings:
>>> df = pd.read_csv('data/ava-all.csv')

>>> df.dtypes

Unnamed: 0 int64

Accident and Rescue Summary: object

Aspect: object

Avalanche Problem: object

Avalanche Type: object

Buried - Fully: float64

Buried - Partly: float64

Carried: float64

Caught: float64

Comments: object

Coordinates: object

Depth: object

Elevation: object

Injured: float64

Killed: int64

Location Name or Route: object

Observation Date: object

Observer Name: object

Occurence Time: object

174

Occurrence Date: object

Region: object

Slope Angle: float64

Snow Profile Comments: object

Terrain Summary: object

Trigger: object

Trigger: additional info: object

Vertical: object

Video: float64

Weak Layer: object

Weather Conditions and History: object

Width: object

coordinates object

killed int64

occurrence-date object

region-forecaster object

region-forecaster-1 object

trigger object

url object

dtype: object

It looks like some of the values are numeric, though the type of
Occurrence Date is object, which means it is a string and not a datetime

object. We will address that later.

NOTE

Because I read this data from the CSV file, pandas tried its hardest to
coerce numeric values. Had I simply converted the list of dictionaries
from the crawled data, the type for all of the columns would have
been object, the string data type (because the scraping returned

strings).

Describing Data

Now, let's inspect the data and see what it looks like. First let's look at the
shape:
>>> df.shape

(92, 38)

This tells us there were 92 rows and 38 columns.
Let'd dig in a little deeper with some summary statistics. A simple way

to do this is with .describe:

>>> print(df.describe().to_string(line_width=60))

 Unnamed: 0 Buried - Fully: Buried - Partly: \

175

count 92.00000 64.000000 22.000000

mean 45.50000 1.156250 1.090909

std 26.70206 0.365963 0.294245

min 0.00000 1.000000 1.000000

25% 22.75000 1.000000 1.000000

50% 45.50000 1.000000 1.000000

75% 68.25000 1.000000 1.000000

max 91.00000 2.000000 2.000000

 Carried: Caught: Injured: Killed: \

count 71.000000 72.000000 5.0 92.000000

mean 1.591549 1.638889 1.0 1.163043

std 1.049863 1.091653 0.0 0.475260

min 1.000000 1.000000 1.0 1.000000

25% 1.000000 1.000000 1.0 1.000000

50% 1.000000 1.000000 1.0 1.000000

75% 2.000000 2.000000 1.0 1.000000

max 7.000000 7.000000 1.0 4.000000

 Slope Angle: Video: killed

count 42.000000 0.0 92.000000

mean 37.785714 NaN 1.163043

std 5.567921 NaN 0.475260

min 10.000000 NaN 1.000000

25% 36.000000 NaN 1.000000

50% 38.000000 NaN 1.000000

75% 40.000000 NaN 1.000000

max 50.000000 NaN 4.000000

There are a few takeaways from this. Unamed: 0 is the index column

that was serialized to CSV. We will ignore that column. Buried - Fully:

is a column that counts how many people were completely buried in the
avalanche. It looks like 64 avalanches had people that were buried. The
average number of people buried was 1.15, the minimum was 1 and the
maximum was 2. The fact that the minimum and maximum numbers are
whole is probably good. It wouldn't make sense that 3.5 people was the
maximum.

Another thing to note is that although the minimum was 1.0, there were
only 64 avalanches that had entries. That means the remaining avalanches
had no entries (NaN). This is probably wrong, though it is hard to tell. NaN

could mean that the reporters did not know whether there were buries.
Another option is that it means that there were zero buries. Though I
suspect the later with recent avalanches, it could be the former with older
entries.

176

I will leave that data, but we can see if we interpret NaN to really mean 0,

then it tells a different story, as the average number of buries drops to .8:
>>> df['Buried - Fully:'].fillna(0).describe()

count 92.000000

mean 0.804348

std 0.615534

min 0.000000

25% 0.000000

50% 1.000000

75% 1.000000

max 2.000000

Name: Buried - Fully:, dtype: float64

We could do this for each of the numeric columns here and decide
whether we need to change them. If we had access to the someone who
knows the data a little better, we could ask them how to resolve such
issues.

On an aesthetic note, there are a bunch of columns with colons on the
end. Let's clean that up, by replacing colons with an empty string:
>>> df = df.rename(columns={x:x.replace(':', '')

... for x in df.columns})

NOTE

The above uses a dictionary comprehension to create a dictionary
from the columns. The syntax:

new_cols = {x:x.replace(':', '') for x in df2.columns}

Is the same as:
new_cols = {}

for x in df2.columns:

 new_cols[x] = x.replace(':', '')

Categorical Data

The columns that don't appear in the output of .describe are columns that

have non-numeric values. Let's inspect a few of them. Many of them are
categorical, in that they don't have free form text, but only a limited set of

177

options. A nice way to inspect a categorical column is to view the results
of the .value_counts column.

Let's inspect the "Aspect" column. In avalanche terms, the aspect is the
direction that the slope faces:
>>> df.Aspect.value_counts()

Northeast 24

North 14

East 9

Northwest 9

West 3

Southeast 3

South 1

Name: Aspect, dtype: int64

This tells us that slopes that are facing north-east are more prone to
slide. Or does it? Skiers tend to ski the north and east aspects. Because
they stay out of the sun, the snow stays softer. One should be careful to
draw the conclusion that skiing south-facing aspects will prevent one from
finding themselves in an avalanche. It is probably the opposite, as the
freeze-thaw cycles from the sun can cause instability that leads to slides.
(It also happens to be the case that the snow is generally worse to ski on).

Let's look at another categorical column, the "Avalanche Type":
>>> df["Avalanche Type"].value_counts()

Hard Slab 27

Soft Slab 24

Wet Slab 1

Cornice Fall 1

Name: Avalanche Type, dtype: int64

This column indicates the type of avalanche. By summing these values
we can see that many are empty:
>>> df["Avalanche Type"].value_counts().sum()

53

Again, the lack of data could indicate an unknown type of avalanche, or
that the reporter forgot to note this. As almost 40% of the incidents are
missing values, it might be hard to infer too much from this. Perhaps the
missing 40% were all "Cornice Fall"? Were they not really avalanches? Is
just the older data missing classifications? (Perhaps the methodology has

178

changed over time). These are the sorts of questions that need answering
when you start digging into data.

Converting Column Types

One value that should be numeric, but didn't show up in .describe is the

"Depth" column. This column reports on the depth of snowpack that slid
during the avalanche. Let's look a little deeper:
>>> df.Depth.head(15)

0 3'

1 4'

2 4'

3 18"

4 8"

5 2'

6 3'

7 2'

8 16"

9 3'

10 2.5'

11 16"

12 NaN

13 3.5'

14 8'

Name: Depth, dtype: object

Here we can see that this field is free-form. Free-form text is a data
janitors nightmare. Sometimes, it was entered as inches, other times as
feet, and occasionally it was missing. As is, it hard to quantify. There is no
out-of-the-box functionality for converting text like this to numbers in
pandas, so we will not be able to take advantage of vectorized built-ins.
But we can pull out a sledgehammer from the python standard library to
help us, the regular expression.

Here is a function that takes a string as input and tries to coerce it to a
number of inches:
>>> import re

>>> def to_inches(orig):

... txt = str(orig)

... if txt == 'nan':

... return orig

... reg = r'''(((\d*\.)?\d*)')?(((\d*\.)?\d*)")?'''

... mo = re.search(reg, txt)

... feet = mo.group(2) or 0

... inches = mo.group(5) or 0

... return float(feet) * 12 + float(inches)

179

The to_inches function returns NaN if that comes in as the orig

parameter. Otherwise, it looks for optional feet (numbers followed by a
single quote) and optional inches (numbers followed by a double quote). It
casts these to floating point numbers and multiplies the feet by twelve.
Finally, it returns the sum.

NOTE

Regular expressions could fill up a book on their own. A few things
to note. We use raw strings to specifiy them (they have an r at the

front), as raw strings don't interpret backslash as an escape character.
This is important because the backslash has special meaning in
regular expressions. \d means match a digit.

The parentheses are used to specify groups. After invoking the
search function, we get match objects as results (mo in the code

above). The .group method pulls out the match inside of the group.

mo.group(2) looks for the second left parenthesis and returns the

match inside of those parentheses. mo.group(5) looks for the fifth left

parentheses, and the match inside of it. Normally Python is zero-
based, where we start counting from zero, but in the case of regular
expression groups, we start counting at one. The first left parenthesis
indicates where the first group starts, group one, not zero.

Let's add a new column to store the depth of the avalanche in inches:
>>> df['depth_inches'] = df.Depth.apply(to_inches)

Now, let's inspect it to make sure it looks ok:
>>> df.depth_inches.describe()

count 61.000000

mean 32.573770

std 17.628064

min 0.000000

25% 24.000000

50% 30.000000

75% 42.000000

max 96.000000

180

Name: depth_inches, dtype: float64

Note that we are still missing values here, which is a little troubling
because an avalanche by definition is snow sliding down a hill, and if no
snow slid down, how do you have an avalanche? If you wanted to assume
that the median is a good default value you could use the following:
df['depth_inches'] = df.depth_inches.fiillna(

 df.depth_inches.median)

Another column that should be numeric is the "Vertical" column. This
indicates how many vertical feet the avalanche slid. We can see the that
dtype is object:

>>> df.Vertical.head(15)

0 1500

1 200

2 175

3 125

4 1500

5 250

6 50

7 1000

8 600

9 350

10 2500

11 800

12 900

13 Unknown

14 1000

Name: Vertical, dtype: object

pandas probably would have coerced this to a numeric column if that
pesky "Unknown" wasn't in there. Is that really different than NaN? Using

the to_numeric function, we can force this column to be numeric. If we

pass errors='coerce', then "Unknown" will be converted to NaN:

>>> df['vert'] = pd.to_numeric(df.Vertical,

... errors='coerce')

Dealing with Dates

Let's look at the "Occurrence Date" column:
>>> df['Occurrence Date'].head()

0 Wednesday, March 4, 2015

1 Friday, March 7, 2014

2 Sunday, February 9, 2014

3 Saturday, February 8, 2014

4 Thursday, April 11, 2013

Name: Occurrence Date, dtype: object

181

Note that the dtype is object, so as is, we cannot perform date analysis

on this. In this case, pandas does have a function for coercion, the
to_datetime function:

>>> pd.to_datetime(df['Occurrence Date']).head()

0 2015-03-04

1 2014-03-07

2 2014-02-09

3 2014-02-08

4 2013-04-11

Name: Occurrence Date, dtype: datetime64[ns]

That's better, the dtype is datetime64[ns] for this. Let's make a column

for year, so we can see yearly trends. Date columns in pandas have a .dt

attribute, that allows us to pull date parts out of it:
>>> df['year'] = pd.to_datetime(

... df['Occurrence Date']).dt.year

The following table lists the attributes found on the .dt attribute:

ATTRIBUTE RESULT

date Date without timestamp

day Day of month

dayofweek Day number (Monday=0)

dayofyear Day of year

days_in_month Number of days in month

daysinmonth Number of days in month

hour Hours of timestamp

is_month_end Is last day of month

is_month_start Is first day of month

is_quarter_end Is last day of quarter

is_quarter_start Is first day of quarter

is_year_end Is last day of year

is_year_start Is first day of year

microsecond Microseconds of timestamp

minute Minutes of timestamp

182

month Month number (Jan=1)

nanosecond Nanoseconds of timestamp

quarter Quarter of date

second Seconds of timestamp

time Time without date

tz Timezone

week Week of year

weekday Day number (Monday=0)

weekofyear Week of year

year Year

Let's look at what day of the week avalanches occur on. The dt attribute

has the weekday and dayofweek attribute (both are the same):

>>> dates = pd.to_datetime(df['Occurrence Date'])

>>> dates.dt.dayofweek.value_counts()

5 29

6 14

4 14

2 10

0 10

3 9

1 6

Name: Occurrence Date, dtype: int64

This gives us the number of the weekday. We could use the .replace

method to map the integer to the string value of the weekday. In this case,
we can see that every date in the original "Occurrence Date" has the day of
week and there are no missing values:
>>> df['Occurrence Date'].isnull().any()

False

Another option to get the weekday name is to split it off of the string:
>>> df['dow'] = df['Occurrence Date'].apply(

... lambda x: x.split(',')[0])

>>> df.dow.value_counts()

Saturday 29

Sunday 14

Friday 14

Monday 10

Wednesday 10

Thursday 9

183

Tuesday 6

Name: dow, dtype: int64

Apparently skiing on Tuesday is the safest day. Again, this is a silly
conclusion as the day doesn't determine whether a slide will occur. You
need to have insight into your data in order to draw conclusions from it.

Splitting a Column into Two Columns

Another problematic column is the "coordinates" column:
>>> df.coordinates.head()

0 NaN

1 40.812120000000, -110.906296000000

2 39.585986000000, -111.270003000000

3 40.482366000000, -111.648088000000

4 40.629000000000, -111.666412000000

Name: coordinates, dtype: object

This column has both the latitude and longitude embedded in it in string
form. Or, it might be empty. We will need some logic to pull these values
out. Here we use a function to tease the latitude out:
>>> def lat(val):

... if str(val) == 'nan':

... return val

... else:

... return float(val.split(',')[0])

>>> df['lat'] = df.coordinates.apply(lat)

We can describe the result to see if it worked. The values should be
centered pretty evenly, because these are located in Utah:
>>> df.lat.describe()

count 78.000000

mean 39.483177

std 6.472255

min 0.000000

25% 40.415395

50% 40.602058

75% 40.668936

max 41.711752

Name: lat, dtype: float64

In this case, we see there is a minimum of 0. This is bad data. A latitude
of zero is not in Utah. We will to address that in a bit. First let's address
longitude. This time we will use a lambda function. This function does

almost the same thing as our lat function above, except it uses an index of

184

1. I don't consider this code very readable, but wanted to show that a
lambda function could be used to perform this logic:

>>> df['lon'] = df.coordinates.apply(

... lambda x: float(x.split(',')[1]) if str(x) != 'nan' \

... else x)

Again, we can do a quick sanity check with .describe:

>>> df.lon.describe()

count 78.000000

mean -108.683679

std 17.748443

min -111.969482

25% -111.679808

50% -111.611396

75% -111.517262

max 0.000000

Name: lon, dtype: float64

We still have the zero value problem. On the longitude we see 0 in the

max location, because the values are negative. Let's address these zeros:

>>> df['lat'] = df.lat.replace(0, float('nan'))

>>> df['lon'] = df.lon.replace(0, float('nan'))

>>> df.lon.describe()

count 76.000000

mean -111.543775

std 0.357423

min -111.969482

25% -111.683284

50% -111.614593

75% -111.520059

max -109.209852

Name: lon, dtype: float64

Much better! No zeros. Though, this means that we cannot plot these
avalanches on our map. If we were eager enough, we could probably
determine these coordinates by hand, by reading the description.
Averaging out the latitudes, and longitudes of the other slides would
probably not be effective here to fill in these missing values.

Analysis

The final product of my analysis was an infographic containing various
chunks of information derived from the data. The first part was the number
of fatal avalanches since 1995 22:
>>> ava95 = df[df.year >= 1995]

>>> len(ava95)

185

61

I also calculated the total number of casualties. This is just the sum of
the "killed" column:
>>> ava95.killed.sum()

72

The next part of my infographic was a plot of count of people killed vs
year. Here's some code to plot that information:
>>> ax = fig.add_subplot(111)

>>> ava95.groupby('year').sum().reset_index(

...).plot.scatter(x='year', y='killed', ax=ax)

>>> fig.savefig('/tmp/pd-ava-1.png')

A figure illustrating plotting deaths over time

In the table below we summarize the various plot types that pandas
supports for data frames.

PLOT

METHODS

RESULT

plot.area Creates an area plot for numeric columns

plot.bar Creates a bar plot for numeric columns

186

plot.barh Creates a horizontal bar plot for numeric columns

plot.box Creates a box plot for numeric columns

plot.density Creates a kernel density estimation plot for numeric columns (also
plot.kde)

plot.hexbin Creates a hexbin plot. Requires x and y parameters

plot.hist Creates a histogram for numeric columns

plot.line Create a line plot. Plots index on x column, and numeric column
values for y

plot.pie Create a pie plot. Requires y parameter or subplots=True for
DataFrame

plot.scatter Create a scatter plot. Requires x and y parameters

The code to plot is a mouthful. Let's examine what is going on. First we
groupby the "year" column. We sum all of the numeric columns. The
result of this is a data frame with the index containing the years and the
columns being the sum of the numeric columns. We call .reset_index on

this to push the index of years that we just grouped by back into a column.
On this data frame we call .plot.scatter and pass in the x and y columns

we want to use. (We reset the index so we could pass 'year' to x).

In my infographic, I ended up using the Seaborn 23 library, because it has
a regplot function that will insert a regression line for us. I also changed

the marker to an X, and passed in a dictionary to scatter_kws to make the

size larger and set the color to a shade of red:
>>> import seaborn as sns

>>> ax = fig.add_subplot(111)

>>> summed = ava95.groupby('year').sum().reset_index()

>>> sns.regplot(x='year', y='killed', data=summed,

... lowess=0, marker='x',

... scatter_kws={'s':100, 'color':'#a40000'})

>>> fig.savefig('/tmp/pd-ava-2.png')

187

A figure illustrating plotting deaths over time, with a regression line compliments of
the seaborn library. Note that Seaborn changes the default aesthetics of matplotlib.

Rather than saving this as a png file, I saved it as an SVG file. This gave
me the ability to edit the graph in a vector editor and the final product
ended up slightly tweaked.

188

A figure illustrating avalanche deaths in Utah, since 1960. This was created with
Python, pandas, and Seaborn. Later the image was imported into Inkscape to add text

and tweak. In this book, we examine deaths since 1995.

Plotting on Maps

Matplotlib has the ability to plot on maps, but to be honest it is painful,
and the result is static. A better option if you are using Jupyter notebooks
for analysis is to use Folium 24. Folium provides an interactive map very
similar to Google Maps, which is useable inside of Jupyter.

After a quick pip install folium and running the following code in

Jupyter, you will have a nice little map. The code puts markers at the
latitude and longitude of the slide event, and it also embeds the "Accident
and Rescue Summary" column in a popup:
import folium

from IPython.display import HTML

def inline_map(map):

 map._build_map()

 return HTML('''<iframe srcdoc="{srcdoc}"

189

 style="width: 100%; height: 500px;">

 </iframe>

 '''.format(srcdoc=map.HTML.replace('"', '"')))

def summary(i, row):

 return '''{} {} {} {}

 <p>{}</p>

 '''.format(i, row['year'], row['Trigger'],

 row['Location Name or Route'],

 row['Accident and Rescue Summary'])

center = [40.5, -111.5]

map = folium.Map(location=center, zoom_start=10,

 tiles='Stamen Terrain', height=700)

for i, row in ava95.iterrows():

 if str(row.lat) == 'nan':

 continue

 map.simple_marker([row.lat, row.lon], popup=summary(r, row))

inline_map(map)

An image of the map was added to the infographic with some
explanatory text.

A figure illustrating a portion of the Folium map used in the infographic.

Bar Plots

I included a few bar plots, because they allow for quick comparisons. I
wanted to show what triggered slides, and at which elevations they occur.
This is simple in pandas.

190

Because the "Trigger" column is categorical, we can use the
.value_counts method to view distribution:

>>> ava95.Trigger.value_counts()

Snowmobiler 25

Skier 14

Snowboarder 12

Unknown 3

Natural 3

Hiker 2

Snowshoer 1

Name: Trigger, dtype: int64

To make this into a bar plot, simply add .plot.bar():

>>> ax = fig.add_subplot(111)

>>> ava95.Trigger.value_counts().plot.bar(ax=ax)

>>> fig.savefig('/tmp/pd-ava-3.png')

Figure illustrating triggers of avalanches.

For the infographic, I added a few graphics, and text to spice it up.

191

Figure illustrating triggers of avalanches used in infographic.

I also wanted a visualization of the elevations at which avalanches
occur. I used a horizontal histogram plot for this, so I called
.plot.hist(orientation='horizontal'). Sadly, the column data type

was set to string as it contained Unknown in it. In order to get a histogram

we need to convert it to a numeric column. Not a problem, we just need to
wrap the column with pd.to_numeric:

>>> ax = fig.add_subplot(111)

>>> pd.to_numeric(ava95.Elevation, errors='coerce')\

... .plot.hist(orientation='horizontal', ax=ax)

>>> fig.savefig('/tmp/pd-ava-4.png')

192

Figure illustrating horizontal histogram of avalanche elevations.

193

Figure illustrating plot of avalanche elevations used in infographic. The plot is slightly
different, as this had older data. I also added in the highest peak and the valley floor to

give some sense of scale.

Assorted Plots

Infographics with images are better, so I had a few more images related to
avalanches. One was a graph of the slopes where the snow slid. I added a
little jitter to the slopes and changed the alpha values so they show up
better:
>>> import math

>>> import random

>>> def to_rad(d):

194

... return d* math.pi / 180

>>> ax = plt.subplot(111)

>>> for i, row in df.iterrows():

... jitter = (random.random() - .5)*.2

... plt.plot([0, 1], [0, math.tan(to_rad(row['Slope Angle'] +

... jitter))], alpha=.3, color='b', linewidth=1)

>>> ax.set_xlim(0, 1)

>>> ax.set_ylim(0, 1)

>>> ax.set_aspect('equal', adjustable='box')

>>> fig.savefig('/tmp/pd-ava-5.png')

Figure illustrating plot of avalanche slopes. Note that the default ratio of the plot is
not square, hence the call to ax.set_aspect('equal', adjustable='box').

For the infographic version, I added some text explaining the outlier in
my SVG editor, and a protractor to help visualize the angles.

195

Figure illustrating slopes in the infographic

Another image that I included was a rose plot of the aspects. The
matplotlib library has the ability to plot in polar coordinates, so I converted
the categorical values of the "Aspect" column into degrees and plotted
that:
>>> mapping = {'North': 90, 'Northeast': 45, 'East': 0,

... 'Southeast': 315, 'South': 270, 'Southwest':225,

... 'West': 180, 'Northwest': 135}

>>> ax = plt.subplot(111, projection='polar')

>>> s = df.Aspect.value_counts()

>>> items = list(s.items())

>>> thetas = [to_rad(mapping[x[0]]-22.5) for x in items]

>>> radii = [x[1] for x in items]

>>> bars = ax.bar(thetas, radii)

>>> fig.savefig('/tmp/pd-ava-6.png')

196

Figure illustrating ratios of avalanche aspects.

The final image in the infographic was touched up slightly in the vector
editor, but you can see that matplotlib is responsible for the graphic
portion.

Figure illustrating aspects in the infographic.

Summary

197

In this chapter we looked at a sample project. Even without a database or
CSV file floating around, we were able to scrape the data from a website.
Then, using pandas, we did some pretty heavy janitorial work on the data.
Finally, we were able to do some analysis and generate some plots of the
data. Since matplotlib has the ability to save as SVG, we were able to
import these plots into a vector editor, and create a fancy infographic from
them.

This should give you a feel for the kind of work that pandas will enable.
Combined with the power of Python, you are only limited by your
imagination. (And your free time).

18 - http://utahavalanchecenter.org/
19 - http://docs.python-requests.org/en/master/
20 - https://www.crummy.com/software/BeautifulSoup/
21 - https://github.com/mattharrison/UtahAvalanche/blob/master/ava-

all.csv
22 - The folks at the Utah Avalanche Center approached me after I

released my infographic and ask that I redo the data with only details from
1995, as they claimed that the data from prior years was less reliable.

23 - https://stanford.edu/~mwaskom/software/seaborn/
24 - https://folium.readthedocs.org/en/latest/

198

http://utahavalanchecenter.org/
http://docs.python-requests.org/en/master/
https://www.crummy.com/software/BeautifulSoup/
https://github.com/mattharrison/UtahAvalanche/blob/master/ava-all.csv
https://stanford.edu/~mwaskom/software/seaborn/
https://folium.readthedocs.org/en/latest/

Summary

THANKS FOR LEARNING ABOUT THE PANDAS LIBRARY. HOPEFULLY, AS YOU HAVE

read through this book, you have begun to appreciate the power in this
library. You might be wondering what to do now that you have finished
this book?

I've taught many people Python and pandas over the years, and they
typically question what to do to continue learning. My answer is pretty
simple: find a project that you would like to work on and find an excuse to
use Python or pandas. If you are in a business setting and use Excel, try to
see if you can replicate what you do in Jupyter and pandas. If you are
interested in Machine Learning, check out Kaggle for projects to try out
your new skills. Or simply find some data about something you are
interested in and start playing around.

For those who like videos and screencasts, I offer a screencast service
called PyCast 25 which has many examples of using Python and pandas in
various projects.

As pandas is an open source project, you can contribute and improve the
library. The library is still in active development.

25 - https://pycast.io

199

https://pycast.io

About the Author

MATT HARRISON HAS BEEN USING PYTHON SINCE 2000. HE RUNS METASNAKE, A
Python and Data Science consultancy and corporate training shop. In the
past, he has worked across the domains of search, build management and
testing, business intelligence and storage.

He has presented and taught tutorials at conferences such as Strata,
SciPy, SCALE, PyCON and OSCON as well as local user conferences.
The structure and content of this book is based off of first hand experience
teaching Python to many individuals.

He blogs at hairysun.com and occasionally tweets useful Python related

information at @__mharrison__.

200

Also Available

Beginning Python Programming

Treading on Python: Beginning Python Programming 26 by Matt Harrison
is the complete book to teach you Python fast. Designed to up your Python
game by covering the basics:

Interpreter Usage
Types
Sequences
Dictionaries
Functions
Indexing and Slicing
File Input and Output

201

Classes
Exceptions
Importing
Libraries
Testing
And more …

Reviews

Matt Harrison gets it, admits there are undeniable flaws and schisms
in Python, and guides you through it in short and to the point
examples. I bought both Kindle and paperback editions to always
have at the ready for continuing to learn to code in Python.
—S. Oakland

This book was a great intro to Python fundamentals, and was very
easy to read. I especially liked all the tips and suggestions scattered
throughout to help the reader program Pythonically :)
—W. Dennis

You don't need 1600 pages to learn Python
Last time I was using Python when Lutz's book Learning Python had
only 300 pages. For whatever reasons, I have to return to Python
right now. I have discovered that the same book today has 1600
pages.
Fortunately, I discovered Harrison's books. I purchased all of them,
both Kindle and paper. Just few days later I was on track.
Harrison's presentation is just right. Short and clear. There is no 50
pages about the Zen and philosophy of using if-then-else construct.
Just facts.
—A. Customer

Treading on Python: Vol 2: Intermediate Python

202

Treading on Python: Vol 2: Intermediate Python 27 by Matt Harrison is the
complete book on intermediate Python. Designed to up your Python game
by covering:

Functional Programming
Lambda Expressions
List Comprehensions
Generator Comprehensions
Iterators
Generators
Closures
Decorators
And more …

Reviews

Complete! All you must know about Python Decorators: theory,
practice, standard decorators.

203

All written in a clear and direct way and very affordable price.
Nice to read in Kindle.
—F. De Arruda (Brazil)

This is a very well written piece that delivers. No fluff and right to the
point, Matt describes how functions and methods are constructed,
then describes the value that decorators offer.
…
Highly recommended, even if you already know decorators, as this is
a very good example of how to explain this syntax illusion to others in
a way they can grasp.
—J Babbington

Decorators explained the way they SHOULD be explained …
There is an old saying to the effect that “Every stick has two ends,
one by which it may be picked up, and one by which it may not.” I
believe that most explanations of decorators fail because they pick up
the stick by the wrong end.
What I like about Matt Harrison’s e-book “Guide to: Learning
Python Decorators” is that it is structured in the way that I think an
introduction to decorators should be structured. It picks up the stick
by the proper end…
Which is just as it should be.
—S. Ferg

This book will clear up your confusions about functions even before
you start to read about decoration at all. In addition to getting
straight about scope, you'll finally get clarity about the difference
between arguments and parameters, positional parameters, named
parameters, etc. The author concedes that this introductory material
is something that some readers will find “pedantic,” but reports that
many people find it helpful. He’s being too modest. The distinctions

204

he draws are essential to moving your programming skills beyond
doing a pretty good imitation to real fluency.
—R. Careago

Ebook Formatting: KF8, Mobi & EPUB

Ebook Formatting: KF8, Mobi & EPUB by Matt Harrison is the complete
book on formatting for all Kindle and EPUB devices. A good deal of the
eBooks found in online stores today have problematic formatting. Ebook
Formatting: KF8, Mobi & EPUB is meant to be an aid in resolving those
issues. Customers hate poorly formatted books. Read through the reviews
on Amazon and you'll find many examples. This doesn't just happen to
self-published books. Books coming out of big Publishing Houses often
suffer similar issues. In the rush to put out a book, one of the most
important aspects affecting readability is ignored.

This books covers all aspects of ebook formatting on the most popular
devices (Kindle, iPad, Android Tablets, Nook and Kobo):

205

http://hairysun.com/books/ebookformatting
http://hairysun.com/books/ebookformatting

Covers
Title Pages
Images
Centering stuff
Box model support
Text Styles
Headings
Page breaks
Tables
Blockquotes
First sentence styling
Non-ASCII characters
Footnotes
Sidebars
Media Queries
Embedded Fonts
Javascript
and more …

26 - http://hairysun.com/books/tread/
27 - http://hairysun.com/books/treadvol2/

206

http://hairysun.com/books/tread/
http://hairysun.com/books/treadvol2/

One more thing

THANK YOU FOR BUYING AND READING THIS BOOK.
If you have found this book helpful, I have a big favor to ask. As a self-

published author, I don't have a big Publishing House with lots of
marketing power pushing my book. I also try to price my books so that
they are much more affordable.

If you enjoyed this book, I hope that you would take a moment to leave
an honest review on Amazon. A short comment on how the book helped
you and what your learned makes a huge difference. A quick review is
useful to others who might be interested in the book.

Thanks again!
Write a review here.

207

https://www.amazon.com/review/create-review/ref=cm_cr_dp_no_rvw_e?ie=UTF8&asin=153359824X&channel=detail-glance&nodeID=283155&store=books

目录

From the Author 4
Introduction 5
Installation 8
Data Structures 11
Series 14
Series CRUD 22
Series Indexing 29
Series Methods 39
Series Plotting 72
Another Series Example 80
DataFrames 91
Data Frame Example 98
Data Frame Methods 112
Data Frame Statistics 131
Grouping, Pivoting, and Reshaping 139
Dealing With Missing Data 155
Joining Data Frames 162
Avalanche Analysis and Plotting 168
Summary 199
About the Author 200
Also Available 201
One more thing 207

208

	From the Author
	Introduction
	Installation
	Data Structures
	Series
	Series CRUD
	Series Indexing
	Series Methods
	Series Plotting
	Another Series Example
	DataFrames
	Data Frame Example
	Data Frame Methods
	Data Frame Statistics
	Grouping, Pivoting, and Reshaping
	Dealing With Missing Data
	Joining Data Frames
	Avalanche Analysis and Plotting
	Summary
	About the Author
	Also Available
	One more thing

